
  

 

Volume 65 ,  No. 2         15 January 2026 

https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=1756709153685
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=1734669074542
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/search?page=1&size=20&sort=custom_sort&search_type=2&q=136
https://nias.repo.nii.ac.jp/records/2000124
https://nias.repo.nii.ac.jp/records/2000124
https://vixra.org/author/tsutomu_hori


長崎総合科学大学 紀 要 第 65 巻 第 2 号 ( pp. 49 - 78 ) 

 

 

 

 
*1

  Professor Emeritus ,  HORI ’s Laboratory of Ship Waves and Hydrostatic Stability , 

Nagasaki Institute of Applied Science , Japan 

  
 Received : September 22 , 2025  《 The Bulletin of Nagasaki Institute of Applied Science, Vol.65, No.2, 

 Accepted :  October 30 , 2025                   Research Notes in Mathematical and Physical Science 》 

 49 

*1
  This paper is essentially an English translation of the Reference (1) written by author, 

with a detailed description of mathematical derivations.  

*2
  Professor Emeritus ,  HORI ’s Laboratory of Ship Waves and Hydrostatic Stability , 

Nagasaki Institute of Applied Science , Japan 
 

 Received :  September 22 , 2025  《 The Bulletin of Nagasaki Institute of Applied Science, Vol.65, No.2, 

 Accepted : November 29 , 2025                   Research Notes in Mathematical and Physical Science 》 
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considering Water Wave Generation caused by Aerial Vortices ─ *1 
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Summary 
 
 

In this paper, a Green’s function considering water wave generation caused by aerial 

vortices is proposed.  The new function is derived in the form that the influence of pressure 

fluctuations on the water surface is reflected by using the Fourier transform method. 
 

By performing an asymptotic analysis for the Green’s function, it is shown that the high-

speed flow field due to an aerial vortex can be represented by placing a slightly weaker vortex 

at the mirror image position under the water surface.  As a result, asymptotic wave profiles 

at the high speed swells up in the neighborhood of WIG. 
 

Furthermore, the lift force and wave-making resistance acting on the WIG are analyzed 

based on the momentum theorem, and thereby smart calculation formulae are presented for 

the two forces.  Based on the developed theory, specific numerical calculations of aerodynamic 

forces and water wave profiles are performed for NACA airfoils as an example of thick wings.  

Thereby a certain amount of knowledge was obtained about the water surface effects of WIG. 
      

Keywords : Aerodynamic Characteristics, WIG, New Green’s Function, 

Water Wave Generation, Aerial Vortices, NACA airfoils        
1.  Introduction 
 

The research on water surface effects of WIG (Wing In Ground-effect) was initiated in the field of 

aeronautics by Tomotika and Imai (2) and Tani (3), but the former assumed 
nF =   and the latter assumed 

0nF =  ( where, 
nF  is Froude number ), failing to properly account for the deformation of water surface.  

Subsequently, in the field of naval architecture in Japan, a pioneering research, taking this into account 

based on the linear wave-making resistance theory, was conducted by Bessho and Ishikawa (4), followed 

by Masuda and Suzuki (5) and Kataoka, Ando and Nakatake (6) from the perspective of numerical analysis. 
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Specifically, Bessho-Ishikawa attempted to analyze the flow field in aerial and underwater sides by 

connecting the linear free surface conditions of both sides on the water surface, and theoretically 

determined the both flow fields by neglecting the effect of water surface deformation at the aerial 

side.  On the other hand, Masuda-Suzuki and Kataoka et al. basically adopted the same water surface 

conditions as Bessho-Ishikawa, and numerically computed both flow fields by iterative calculations, 

taking into account the effects of water surface deformation at aerial and underwater sides. 
 

These studies have shown that the aerodynamic characteristics of the flow field around the WIG, 

taking the water surface effect into account, can be roughly calculated by using a so-called normal mirror 

image model in which the water surface is replaced by a rigid wall  (3).  Nevertheless, the wave-making 

phenomenon itself of the water surface caused by aerial vortices is still a subject for further investigation 

from the viewpoint of ship hydrodynamics. 
 

In view of this situation, this paper constructs a Green's function considering the water wave 

generation caused by aerial vortices in a 2-dimensional problem.  The new function is taken into account 

pressure fluctuations on the water surface, which was neglected by Bessho-Ishikawa, and is formed by 

using the Fourier transform method.  Then we derive an expression for the flow field at high speeds  (1) 

and a simple formula for asymptotic wave profiles.  It is shown that the flow field in the aerial side is 

represented by the vortex   in the air and the image one 

1
( 1 2 )






+
−  in the water, where   is the density 

ratio of air to water.  As a result, asymptotic wave profile at the high speed swells up in the neighborhood 

of WIG. 
 

Furthermore, the lift force and wave-making resistance acting on the WIG are analyzed based on the 

momentum theorem, and thereby smart calculation formulae are presented for the two forces.  For the 

former of lift force, it is indicated that the Kutta-Joukowski’s theorem also holds in the case of WIG.  And 

regarding the latter of wave-making resistance, an explicit formula is derived by detailed considerations, 

and it can be calculated only from the amplitude of trailing free waves, without the need for tedious 

integral over the still water surface.  Based on the developed theory, specific numerical calculations of 

aerodynamic forces and water wave profiles are performed for NACA airfoils as an example of thick wings.  

Thereby a certain amount of knowledge is provided about the water surface effects of WIG. 
 

We believe that some of this information can be used as a basis for future research, so we would like 

to report all of you smart readers here and ask for your criticism. 
 
 
 
  

2.  Construction of Wave-making Green's Functions caused by Aerial Vortices 
 

The flow field around 2-D WIG is represented as a steady lifting surface problem for the aerial side 

and underwater side, taking into account wave generations at the interface, the water surface (7). 
 

As shown in Fig. 1, WIG of wing chord length c with an angle of attack α is floating on the aerial side 

in a uniform flow of size U with free surface at a surfacing altitude h from the still water surface to the 

trailing edge of the wing.  For the analysis, a Cartesian coordinate system is used with the origin o on 

the still water surface, the x-axis in the uniform flow direction, and the z-axis in the vertical upward 

direction. 

https://vixra.org/author/tsutomu_hori
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The velocity potentials 
A

 and 
W

 of the flow field on the aerial and underwater sides can be written 

by superposing the disturbed velocity potentials 
A

 and 
W

 on those of the uniform flow U, respectively, 

as follows : 

:

:

( )

( )
W W

A AAerial Side for z

Underwater Side for z

Ux

Ux





 

 





= + 


= + 
 ････････････････････････････････(1) 

 
 
 

In this chapter, we will derive the surface conditions and construct the wave-making Green's functions 

which satisfy them for the above disturbed potentials 
A

 and 
W

, as shown in the following sections. 
  

 
 

Fig. 1  Coordinate system and definitions of some basic quantities 

in the problem of WIG. 
 
 
 
 

2. 1  Water surface conditions 
 

The pressure condition [D] is imposed that the gauge pressure 
Ap  on the aerial side and the gauge 

pressure 
Wp  on the underwater side are equal on the water surface at z = , as follows : 

 
 

( )[ ] ( 0)
WA on zD p p p == =     ････････････････････････････････････････(2) 

 
 

Let us apply the Bernoulli's theorem to the both of the aerial and underwater sides.  By considering 

that the disturbed flow disappears at far upstream ( )x →  and linearizing the both equations from the 

assumption of small wave heights generated by WIG, the condition [D] can be written on the still water 

surface at 0z =  , as follows : 
  

[ ]D  
0

0

:

:

( 0 )

( 0 )

A

W

W W

W A

A
A A

p
on z

U

p p
on z

U U

Aerial Side U
x

Underwater Side U
x



 


   


    

+ = +

= −

 
+ = −

 


  + + = − = −     

 ･････････(3) 

 
 

Here, unlike the usual problem of water waves caused by underwater disturbances, we cannot set that

0p = , i.e., p  on the right-hand side is equal to atmospheric pressure. 
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In the above equation,   is parameter representing the density ratio of air to water and  0  is wave 
 

number, each of two are defined as follows : 
 

0 2

1
( 0.001275 4 C )

784

A

W

at

g

U









= =   



=


 ･･･････････････････････････････････････････(4) 

 

In addition, 
W A  and 

WW  in Eq. (3) are Rayleigh's virtual friction coefficients for air and water 

respectively, and both are set to 0 →A
 and 0 →

W
 after the analysis.  And, g is the gravitational 

acceleration. 
 

On the other hand, the kinematic condition [K], which imposes that the flow moves along the wave 

surface, can also be written by linearizing in the same way as the pressure conditions [D] in Eq. (3), as 

follows : 

:

:

( 0)

( 0)

[ ]

A

W

on

on

Aerial Side z

Underwater Side z

U
z x

K

U
z x

 

 

= +

= −

  
=  


  =

 

 ････････････････････････････････(5) 

 
 
 
 
  

Here, let us eliminate the wave height   by differentiating Eq. (3) with x and substituting Eq. (5) into 

it.  Then if we connect the pressure conditions [D] on the aerial and underwater sides by equating the 

pressure gradient 
p

x




 at 0= +z  and 0= −z , the following water surface condition [F] can be obtained : 

 
 

22

0 02 2
( 0 )

1
[ ]

W W WA A A
A W on zF

z x z xx x

    
   


=

     
+ + = + + 

      

 ･････････････(6) 

 
 

By equating the wave slope 



x
 in the upper and lower two equations of Eq. (5), the kinematic condition 

[K] can be rewritten as : 
 

( 0)[ ] WA
on zK

z z


=


=

 
 ･･････････････････････････････････････････････････(7) 

 

In the next section, we will solve for both disturbed potentials 
A  and W  by coupling Eqs. (6) and (7) 

above. 
    

2. 2  Construction of Green's functions 
 

Let us construct a wave-making Green's function for a clockwise two-dimensional vortex of strength 

2 =  at a point ( , )h  in the air, as shown in Fig. 2.  The Green's functions for the aerial and 

underwater sides are denoted by 
AG  and 

W
G  respectively, and are constructed in the following form : 

 
 

:

:

( 0)

( 0)

A A

W W

Aerial Side for

Underwater Side for

z

z

G G

G G

 



= − + 


= 
 ････････････････････････････････････(8) 
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Here, 
AG  and 

W
G  on the right-hand side represent the regular parts of 

AG  and 
W

G , respectively. 
 

Then, the disturbed velocity potentials 
A
  and 

W
 , corresponding to 

AG  and 
W

G , can be expressed in 

the form of boundary integrals along the wing surface 
H
  respectively, by denoting the distribution 

density of bound vortices by ( , )h  , as follows : 
 
 

1
( , ) ( , ; , )

2

1
( , ) ( , ; , )

2

H

H

H

W W H

A Ah G x z h d

h G x z h d

   


   



= 



=














 ･････････････････････････････････････････(9) 

  

The Green's functions 
AG  and 

WG  can be determined so as to satisfy the free surface conditions [F] 

and [K] shown in Eqs. (6) and (7) in the previous section, by using the Fourier transform method (7).  The 

procedure is described below. 
 

The formal Fourier integral notation of the principal solution − , which represents an aerial vortex, 

for the region 0z h−   including the water surface, has the following form : 
  

( ) ( )

0

1
( 0 )tan Im

k z h ik x
for

z h
z h

x

dk
e

k







− + −− −

= − − 
−

− = −
   
     

   ･･･････････････････(10) 

  

Here, Im[ ]  means taking the imaginary part inside the brackets. 
 

Corresponding to the above expression, the regular part of the Green's function 
AG  and 

WG  are 

written in the form of Fourier transform of the undetermined kernel functions ( )A k  and ( )W k  

respectively, as follows : 
 

0

0

: Im ( ) ( 0)

: Im ( ) ( 0)

kz ikx

A

kz ikx

W

A

W

for

for

Aerial Side k e dk z

Underwater Side k e dk z

G

G






− +


+





 =

 =

 
   


  
   




 ････････････････････････(11) 

 

   
Fig. 2  Coordinate system of Green’s function for an aerial vortex. 
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Hereafter, all Green's functions in complex notation will take their imaginary part and be noted by 

omitting Im[ ] .  Here, each of the above integrands is formed so as to satisfy the following z-directional 

asymptotic behaviors, in which the disturbed flow vanishes at infinite altitude and infinite depth. 
  

: 0

: 0

A
z

W
z

Aerial Side G

Underwater Side G

→

→−










～

～
 ･･･････････････････････････････････････････････(12) 

 

Now, the unknown functions ( )A k  and ( )W k  can be determined so that the Green's functions 
AG  

and 
WG  satisfy the following equations on the still water surface  0z =  as the free surface conditions in 

Eqs. (6) and (7). 
 

( )

( )

2 2

0 02 2

1
[ ] ( 0)

[ ] ( 0)

A WA W

A W

F on z
z x z xx x

K on z
z z

G G

G G

   






     
+ + = + + =

    

 
= =

 

 − +

 − +

   
   
   




 ････････(13) 

   

Therefore, by substituting  − , 
AG  and 

WG  of Eqs. (10) and (11) into the conditions [F] and [K] of 

Eq. (13) above and calculating them, the relations between ( )A k  and ( )W k are obtained as follows : 
 

( ) ( ) ( )

( )

0 0 0
[ ]

[ ]

1
( ) ( )

( ) ( )

kh ik

A A A W W

kh ik

A W

F

K

k i e k i k k k i k k

e k k k k





       


 

− −

− −

= −

−

− − − + − − −

+ =







 ･････････(14) 

 

Then, the above simultaneous equations can be easily solved for ( )A k  and ( )W k  respectively, by 

putting 
A  and W

  in the numerator to zero.  Accordingly, ( )A k  on the aerial side and ( )W k  on the 

underwater side are determined as follows : 
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W W
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k
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e
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
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
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 







 ･･･････････(15) 

 

The above 
* *

0,   and 
*

W  are modified quantities of the original 0,   and W  by using the air-to-water 

density ratio   in Eq. (4), and are defined as follows : 
 

* *

* *

0 0 0

1 1

1

1

,

( 1 2 )

W A

W

  


 








  

+

+ +

−

+


  


  = −


 ･････････････････････････････････････････････････(16) 

  

Since the kernel functions ( )A k  and ( )W k  have been determined in this way, the Green functions 

AG  and 
WG  are expressed by substituting Eq. (15) into Eq. (11), as shown below. 
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The Green's function 
AG  for the aerial side can be obtained in the following form : 

 
 

* *

0

( ) ( ) * ( ) ( )

0 0
0

1
Im 2 Im

Wfor

k z h ik x k z h ik x
A

z h k i

dk
G e e dk

k
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 


 
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  
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    
   

* *

0

1 * ( ) ( )

0

1
tan 2 Im

W

k z h ik xz h

x k i

e dk


  



− − + + −+

− − −

+
  

=   
   

  

   + 
AG   ･････････････････････････････････････････････････････････････(17) 

 
 

Here, the 1st term represents the counterclockwise vortex    at the mirror position ( , )h − , for the 

aerial region 0z h+   including the water surface.  The 2nd term, denoted by 
AG , represents the wave 

generation, and is written as follows : 
  

* *

0

* ( ) ( )

0

1
2 Im

W

k z h ik x
A

k i
G e dk

 



− + + −

− −

 
 =  

  
  ･･･････････････････････････････････(18) 

  
Then, the total Green’s function AG  in Eq. (8) can be written by the result of Eq. (17), as follows : 

  

( )

( )

A A A

A A

G G G

G G G

  

 

  = − + = − + +

  = − + +  +



   ････････････････････････････････････(19) 

 

Here, the 1st and 2nd terms in the 2nd line represent the velocity potential of the double model flow and 

it is denoted by G . 
  

On the other hand, the Green's function 
W

G  for the underwater side is obtained in the following form, 

and shows the similar characteristics to the wave-making term 
AG  for the aerial side in Eq. (18). 

 

( ) *

* *0

0

( ) ( )1
2 Im

W

W W

k z h ik x
e dk

k i
G G 


 

 − + −
= = −

− −

 
 
 

    ････････････････････････････(20) 

     

3.  Expression of Wave Height   
 

The wave height   can be obtained by equating the pressure p and eliminating it in the pressure 

condition [D] on the aerial and underwater sides in Eq. (3), as follows : 
 

0 0

1

(1 )

W A

z
U x x 

 
 

=

= − 
−

 
−      

 ･･･････････････････････････････････････････(21) 

 

Here, in the above calculation process, the virtual friction coefficients 
W A  and 

WW  are set to zero in 

Eq. (3). 
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Also, using Eqs. (8) and (17) for 
A

G  and 
W

G  corresponding to 
A

 and 
W

, the wave height G  is written 

in the level of Green's function, as follows : 
 

0

'

0

1

(1 )
( )

 
  

=−

  
 = −  − − + +

  

  
  
  


W AG

z

G G
U x x x

 ･･････････････････････････････(22) 

 

Here, by differentiating Eqs. (20) and (18) with x, the following relation holds at 0z =  on the still water 

surface. 

0 0

W A

z z

G G

x x
= =

=
  

− 
   


 ････････････････････････････････････････････････････････(23) 

    
By using the above relation and eliminating the underwater Green's function 

W
G , the wave height G  

in Eq. (22) can be expressed by 
* *

0,   in Eq. (16), as follows : 
  

0
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 
 − +  −

   − +
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 
  

   
=       




  ･･･････････(24) 

 
 

Then, by differentiating Eq. (18) with x and substituting it into AG   above, the following expression is 

obtained : 

ˆ *

*

* * * 2 20
0 0

ˆ*
ˆ *

0* * * 2 20 0
0 0

ˆ*

1 *

0* * *0
0 0

ˆ

1 2
2

ˆ

2

ˆ

2
tan

ˆ

Im

Im

Re

kh ikx

W

kh ikx

kh ikx

W

kh ikx

W

G

x

k e h
i dk

k i x h

e h
i e dk i dk

k i x h

h e

x k i

U

U

U


 

  




  




  

− +


− +
 

− +

− +

−



=  −
− − +

=  + −
− − +

= 
− −

   
  
   

   
  
   

 
− + 

 


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x h



−
+

   
  
   
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* *

0
0

2
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kh ikx

W

e

k i
dk

U

− +


− −

 
=  

 




 
  ･･････････････････････････････････････････････(25) 

     

Here, the above equation is the result of the cancellation of the 1st and 3rdd terms in braces  ... .  

Re[...]  is meant to take the real part for complex notation.  Then, x̂  is the x-coordinate measured from 

x = , and is defined by : 
   

x̂ x  −   ･･････････････････････････････････････････････････････････････････(26) 
  

Now, let us consider the semi-infinite integral with respect to k in Eq. (25), by extending it onto the 

Gaussian plane k i m+ .  Depending on whether x̂  is positive or negative, we apply the residue theorem 

and transfer the integral on the real axis k to the imaginary axis m, then set 
* 0
W

 → .  By doing so, the 

following meaningful result is obtained : 
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･････････････(27)   

Here, (...)  means taking the complex conjugate.  ˆsgn x  is signum function and takes +1 and -1 

depending on the positive and negative values of x̂ . 
 

Thus, taking the real part of the above result, the 2nd term becomes unnecessary, and G  in Eq. (25) 

is expressed as follows : 
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Furthermore, the integral in the above equation is performed by substituting the real variable m with 

the following complex variable   : 

*
0

ˆ( ) ( )m i x i h = +  +   ･････････････････････････････････････････････････････(29) 

 
Accordingly, the integral with m can be rewritten to the following integral with  , and it can be 

expressed as an integral exponential function Ei  in the complex plane. 
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By using this result into Eq. (28), the wave height G  can be expressed as follows : 
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Here, ( )*

0
ˆ( )Ei i x ih− +  is can be calculated by the following Taylor expansion form (8), (9) : 
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Then, Ei  is decomposed into the real part CE  and the imaginary part SE , and both parts are written  

respectively, as follows : 
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Here, R ,   and 
0  above are defined by : 
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Therefore, by using 
CE  and 

SE  in Eq. (33), the wave height G  in Eq. (31) can ultimately be expressed 

as follows : 
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Now, the integral exponential function Ei  decays by the following order as 
0R →  due to its 

asymptotic expansion (8), (9). 
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Then, the real and imaginary parts 
CE  and 

SE  of the above Ei  disappear far upstream and 

downstream, as follows : 
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Hence, the 1st and 2nd terms in Eq. (35) represent the local disturbed wave and the 3rd term represents 

the trailing free wave.  Accordingly, the asymptotic wave profile G  at the downstream can be expressed 

in the level of Green's function as the following simple form : 
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In this case, the wave height   generated by the WIG can be computed by integrating the product of 

( , )h   and G  due to the expression in Eq. (9), as follows : 
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Therefore, the asymptotic behavior of the wave profile   due to WIG can be written as follows : 

  

( )*

0( ) sin
x

x Z x  
→

− −～  ･･･････････････････････････････････････････････････(40) 

https://vixra.org/author/tsutomu_hori


 59 

 Analysis on Aerodynamic Characteristics of WIG 

 ─ Proposal of New Green’s Function considering Water Wave Generation caused by Aerial Vortices ─ 

 

 

Here, Z  is the wave amplitude in the downstream and   is the angle of phase delay, and both are 

constants. 
  

On the other hand, the wave slope  
G

x




 can be obtained by using AG   and 

WG  in Eqs. (18), (19), (20) 

instead of 
A

 and 
W

 in Eq. (5), as follows : 
 

0 0 0

( )A A W

G

z z z

G G G G
U z U z U zx





= = =

  
  = +

  

   
= =  

   

  

*
( )

* *0
0

2
Im kh ik x

W

k
e dk

k iU



 


− + −

= −
− −

 
  

  
  ･･･････････････････････････････････(41) 

     

Thus, the wave height G  can also be calculated by integrating the above equation with x as follows, 

and the result is obtained as same as Eq. (25). 
  

*

( )

* *0
0

2 1
Im

x
kh ik xG

G

W

dx e dk
x k i

i
U

 


 


− + −

−
=


=

 − −

 
  

 
   

*

( )

* *0
0

2 1
Re kh ik x

W

e dk
k iU



 


− + −

=
− −

 
  

 
   ････････････････････････････････････(42) 

          
4.  Flow Field at Low and High Speeds 
 

   In this chapter, we consider the asymptotic behavior of Green's functions ,A WG G   and wave height   

at the range of low and high speeds, and try to extract the characteristics of the flow field (7). 
  

4. 1  Asymptotic behavior at low speed limits 
0

 →   
 

Let us consider the approximation of the water surface condition at low speeds.  For 0 → (2), 

[F] in Eq. (6) becomes as : 
  

[ ] ( 0)
1 




= =

 

WA
onF z

z z
  ････････････････････････････････････････････(43) 

  

By solving the above [F] and [K] in Eq. (7) simultaneously, the following relation is obtained, and it 

represents the rigid wall condition (3). 
  

0 ( 0)
WA

on z
z z

 
= = =

 
  ････････････････････････････････････････････････(44) 

  

And, the above condition can be expressed in the level of Green's function by referring Eq. (8), as 

follows : 

( 0)( ) 0WA on zG G
z z

 = =
 

 − + =
 

  ････････････････････････････････････････(45) 
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If the Fourier integral form of Eq. (11) is adopted for AG   and 
WG   in Eq. (45), the kernel functions 

( )A k  and ( )W k  can be solved as follows, and both results coincide with the case of 
0 →  in Eq. (15). 

   
1

( )

( ) 0






− −
= −

=







A

W

kh ik
k

k

k

e
 ･･････････････････････････････････････････････････････(46) 

    
  

Accordingly, the Green's function AG   on the aerial side is obtained by substituting Eq. (46) into 

Eq. (11), as follows : 
 

*

0

( )

0
sin ( ) ( 0)

k z h

A for
dk

G e k x z h
k




− +

→

 − − + ～  

1
tan

z h

x 


− +

−
= =

 
 
 

  ････････････････････････････････････････････････････(47) 

 
 

In the low-speed limit, it is found that AG   represents a counterclockwise mirror-image vortex   , 

which is placed at ( , )h −  in the water and is same strength and opposite direction as the aerial vortex.  

Then 
AG   due to wave generation becomes zero by referring Eq.(17). 

 
 

On the other hand, by setting ( ) 0W k =  in Eq. (11), the Green's function 
WG   on the underwater side 

asymptotically tends to zero, as follows : 
 

*

0

0WG
→

 ～


  ･････････････････････････････････････････････････････････････････(48) 

Therefore, the wave height G  is obtained by setting 0W AG G = =
 in Eqs. (22) and (24), as follows : 

  

*

0

'

0 0

( )
(1 )

G

zU x→ =


 

− + −  
～




  

 

*

* 2 2
0

2

( )

h

U x h
= −

− +



 
  ････････････････････････(49) 

  

This indicates that the wave height G  in the low-speed limit takes a weakly negative value of about 

* *

0( / ) O , and the water surface slightly sinks. 
 
 
 
 
 

4. 2  Asymptotic behavior at high speed limits 
0

0 →  
 

In this section, let us consider the approximation of water surface conditions at high speeds.  The 

pressure condition [D] in Eq. (3) is written by equating  p on both sides at the limit of 
0 0→ (2), as follows : 

 

[ ] ( 0)
1 WA

onD z
x x


= =

 




  ････････････････････････････････････････････(50) 

 

In this limit, the water surface condition [F] in Eq. (6) becomes the following form of the 1st order 

derivative of [D] in Eq. (50) with respect to x : 
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22

2 2
[ ] ( 0)

1 WA
onF z

x x






= =

 
  ･････････････････････････････････････････････(51) 

 
 

Then, the Green function in Eq. (8) should be determined by simultaneously solving the pressure 

condition [D] in Eq. (50) and the kinematic condition [K] in Eq. (7), in such a way as to satisfy the following 

equation : 

[ ] ( )

[ ] ( )

1
W

W

A

A

G
D G

x x

G
K G

z x








− + =

 


− + =

 







 ･････････････････････････････････････････････････(52) 

 
 
 
 
 
 

Proceeding by adopting the Fourier integral form of Eq. (11) for AG   and 
WG   respectively, the kernel 

functions ( )A k  and ( )W k  are obtained as follows, and the results coincide with the case setting 

0 0→  in Eq. (15). 
  

*

*

( ) (1 2 )

( ) 2

kh ik

A

kh ik

W

e
k

k

e
k

k





 

 

− −

− −

= − −

= −








 ･････････････････････････････････････････････････････(53) 

      

Therefore, the Green's function 
AG  in the aerial side is obtained as follows : 

  

*

0

*

00

( )
(1 2 ) sin ( 0)( )A

k z h
for

dk
e k z h

k
G x



 


→

− +
− − +  −～  

* 1 *
(1 2 ) tan (1 2 )

z h

x 
  

− +

−
= − = −

 
 
 

  ････････････････････････････････････････(54) 

  

In the high-speed limit, the 
AG  above represents a counterclockwise vortex 

*
(1 2 ) −    placed at mirror-

image position ( , )h −  in the water.  Its vortex strength is slightly 
*2  weaker than the original aerial 

vortex. 
 

On the other hand, the Green's function WG  in the underwater side is obtained as follows, and it can 

be represented by a weakly clockwise vortex of strength 
*

2  at the same position ( , )h  as the original 

aerial vortex. 

*

0

*

00

( )
2 sin ( 0)( )W

k z h
for

dk
e k z h

k
G x



 


→

−
− −  −～  

* 1 *
2 tan 2

z h

x 
  

− −

−
= − = −

 
 
 

  ･･････････････････････････････････････････････(55) 

 

Thus, the flow field in the high-speed limit can be expressed concisely by both Eqs. (54) and (55) above, 

without including the wave-making term.： 
  

Now, substituting above WG  into the kinematic condition [K] in Eq. (5), the wave slope 
G

x






 can be 

calculated.  By integrating it with respect to x, the wave height G  in the high-speed limit at 
*
0 0→  is 

obtained, as follows : 
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*

0

1

0
00

*

tan
1 2

W

zz

x x x
G

G

z h

x

G

x z z
dx dx dx

U U 

 
 −

→
==

− − −

−

−

  

  

  
= = −   

 
  ～  

2 2

2 2
ˆ

* *ˆ ˆ
ˆ

ˆ
log

2 2
ˆ

e
x

x x
x h

x h
dx

U U



−
+

+

 = − =
  

 
 ･･･････････････････････････(56) 

  

However, the above expression is not settled in finite values and diverges logarithmically to positive 

values.  Therefore, changing the method, the high-speed asymptotic solution of G  can be obtained by 

taking the leading term of 
CE  and 

SE  at the limit of 
*
0 0→  in the Taylor expansion form of Eq. (33) and 

by substituting both into Eq. (35), as follows : 
 
 

( )

*

0 0

*
*

0 0

2
* * *
0 0 0 0

2
log

ˆ ˆsin sgn log ( )
2

G e

e

R
U

R x x h R O




  


      

→

− +


  
+ + + − − + +  

   

～

 ･･････(57) 

 

By calculating the above formula, the wave height G  at ˆ (1)x O= , which is not too far from the vortex, 

can be estimated approximately.  And the asymptotic value at the high-speed of 
*
0 0→  is the order of 

*
*
0

2
log ( > 0)e R

U
−


 .  Here, R ,   and 

0  above are defined by Eq. (34).  This indicates that the wave 

height near the clockwise aerial vortex is obtained positively and the wave surface is raised in the high 

speed range. 
     

5.  Lift Force and Wave-making Resistance 
 

Let us apply the momentum theorem to the control surface in the aerial side where z  , as shown 

in Fig. 3.  If the unit normal vector pointing inwards to fluid is denoted by ( )x zn n= +n i k , the velocity 

vector of flow by ( )q i kA AU u w= + +  and the flow velocity in n - direction by ( )nq = •q n , the following 

equation is obtained : 
 

H F
A

n

p
q g z d

+ +

   
+ + =  

   
 0


q n   ･･････････････････････････････････････････(58) 
 
 
 
 

Here, we cannot set 0p =  on the water surface 
F
 , i.e., p  is equal to atmospheric pressure, unlike the 

usual problem of water waves caused by underwater disturbances.  Taking this into account, the 

aerodynamic force ( )F i kx zF F= +  acting on the WIG, surrounding by wing contour  
H

, can be 

calculated by the following boundary integral : 
  

H
A

p d= −  


F
n  

2 2

2F

A A
H n A

u w
g A q U u d

+

  + 
= − +   

   
 +k q n   ･････････････････････････････(59) 

 
   

In the above integral, the three far boundaries 
D T U
+ +  are connected and denoted by 


 . 
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Fig. 3  Control surface of the momentum theorem around WIG. 

       

5. 1  Lift force 
 

Let us consider the aerodynamic force zF  in the z - direction.  The lift force L can be obtained by 

excluding the static buoyant force A Hg A  from the z - component of Eq. (59), as follows : 
  

H

A A

zFL
g A

 
= −  

2 2

2F

A A
n A A z

u w
q w U u n d

+

  + 
− +   

   
 =   ････････････････････････････････････(60) 

  
 

Here, HA  is the area of wing cross-section, and 
nq  and zn  take the following values at the four 

surrounding boundaries , , ,
F T U D
  respectively : 

 
 

( )

( )

( )

( )

: 0 ,

: , 1

: , 0

: ( ) , 0

F n z

T n A z

U n A z

D n A z

Free Suface of Water

Top of Ceiling

Upstream

Downstream

q n d dx

q w n

q U u n

q U u n

= = 


= − = − 


= + = 
= − + = 









 ･････････････････････････････(61) 

  

Accordingly, lift force L in Eq. (60) is written as follows : 
 
 

2 2 2 2
2

2 2F T

A A A A
A A A

A

u w u wL
Uu dx w Uu dx

    + + 
= − + + − + +    

     
 

 

( ) ( )
U D

A A A AU u w dz U u w dz+ + − + 
  ･････････････････････････････････(62) 
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If we neglect the 2nd order terms and extract only the linear terms of the disturbed flow, the above 

equation can be expressed in counterclockwise circumferential integral for the infinity control surface, as 

follows :  

   
0

0
0

F D T U
A A A A

A x z xz

L
U u dx U w dz U u dx U w dz



  −

− 
= = =−=


= − − − −   

 

( ) ( )
F D T U F

A A A AU u dx w dz U u dx w dz
+ + + +

= − + = − + 
  ･････････････････(63) 

  

The above equation is expressed in terms of velocity potentials, as follows : 
  

F F

A A
A

A

L
U dx dz U d

x z

 


  + +

  
= − + = − 

  
   

 

( )


F F
AU d d U d   

 + +
= − + = −   

 

2

0 2
U d U

 
 



 
= − − = 

 
   ･･･････････････････････････････････････････････(64) 

 

In the above calculation process, A  corresponds to 
AG  in Eq. (18) and is regular in the aerial side, so 

the contour integral value is zero.  And 
  , corresponding to G  in Eq. (19), is the velocity potential of 

the double model flow due to the aerial vortex plus the mirror image vortex, so it has a circulation   

resulting from the contour integral value. 
  

Therefore, the lift force L is obtained in the following form by referring to Eq. (9), and it indicates that 

the Kutta - Joukowski’s theorem holds for the lift of the WIG as well, same as an ordinary wing. 
 

( , )



H

A A HL U U h d    = =    ･････････････････････････････････････････････(65) 

 
Then, the lift coefficient LC  is defined by : 

 

21

2

L

A

L
C

U c

=   ････････････････････････････････････････････････････････････(66) 

    

5. 2  Wave-making resistance 
 

The aerodynamic force xF  in the z - direction can be obtained by taking the x - component of Eq. (59), as 

follows : 
 

2 2

( )
2


F

A A
n A A

A

x
x

F u w
q U u U u n d

 +

  + 
= + − +   

   
   ･････････････････････････････････(67) 

  

The above xF  is the so-called wave-making resistance 
W

R .  Here, 
nq  and xn  take the following 

values at the four surrounding boundaries , , ,
F T U D
  respectively. 
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( )

( )

( )

( )

: 0 ,

: , 0

: , 1

: ( ) , 1

x
F n x z

z

T n A x

F n A x

F n A x

Free Suface of Water

Top of Ceiling

Upstream

Downstream

n
q n d n d dx

n x

q w n

q U u n

q U u n

 
= =  = − 

= − = 
= + = +


= − + = − 











 ････････････････････(68) 

  

Furthermore, 
W

R  in Eq. (67) can be written as follows : 
  

2 2

2 2 2 2

2 2

( )
2

( ) ( )
2 2

F T

U D

W A A

A A A

A

A A A A

A A A A

R u w
U u dx w U u dx

x

u w u w
U u U u dz U u U u dz





 + 
= +  − + 

 

      + +   
+ + − + + − + + +       

         

 

 




 ････(69) 

 
 

Then, with a slight deformation of the 2nd line, we obtain as : 
 
 

2 2

2 2 2 2

( )
2

( ) ( )
2 2

F T

U U

W A A

A A A

A

A A A A

A A

R u w
U u dx w U u dx

x

u w u w
U U u dz U U u dz





 + 
= +  − + 

 

   − −
+ + + − + +   

   

 

 




  ････････････････(70) 

  

Here, the following continuous condition of flow holds as : 
 

( ) ( ) 0
U D T

A A AU u dz U u dz w dx+ − + − =  
  ･････････････････････････････････(71) 

 

And, by the kinematic condition [K] of Eq. (5), the wave slope 
x






 is written as : 

 

Aw

x U


=


  ･････････････････････････････････････････････････････････････････(72) 

 

Using the above two conditions and deforming Eq.(70), it can be expressed as follows : 
 

2 2 2 2 2 2

2 2 2F T U D

A A A A A AW

A A A A

A

u w u w u w

U

R
u w dx u w dx dz dz



+ − − 
= + − + − 

 
   

  ･････････(73) 

 

By neglecting the minute quantities over the 3rd order due to the disturbed flow, the above Eq. (73) can 

be written in the following form, and the values on 
F
  can be concisely calculated on 0z = . 

 
 


2 2 2 2

0 2 2F T U D

A A A AW

A A A A

A
z

w u w uR
u w dx u w dx dz dz

 =

− −
= − − +   

 ･･･････････････(74) 

  

If the surrounding control surfaces are set to infinite distance, the boundary integrals on 
F
  and 

D
 , 

where the trailing wavy flows  
W

u  and 
W

w  exist, remain only, and those on 
T
  and 

U
  disappear. 

 

Therefore, the wave-making resistance 
W

R  can be obtained as follows : 
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
2 2

00 2

 

− =

=

−
= + 


 

W A A

A A

A
z

x

R w u
u w dx dz   ････････････････････････････････････(75) 

 
This result indicates that 

W
R  cannot be calculated solely from information on the downstream 

D
 , 

unlike in the case of normal underwater disturbances, and requires an integral operation over the still 

water surface 0z = . 
    

5. 2. 1  Consideration (A) for the formula of wave-making resistance 
 

In this section, the momentum theorem similar to Eq. (67) is applied to the regular underwater side 

F 
+  with no disturbance source where z  , by using ( ) ,

W W
U u w = + +q i k  ( )x zn n  = +n i k  and 

( )nq  = •q n , as shown in Fig. 3.  Then the following equation for the z - component is obtained : 
 
 

2 2

( ) 0
2F

W W

Wn W x

u w
q U u U u n d

+ 

  + 
 + − + =  

   
    ･･････････････････････････････････(76) 

 
 

Here, the quantities on 
U
  and 

D
  are the same as those in the aerial side of Eq. (68).  However, it 

should be noted that the following values are used on 
F

  and 
B

  :   

( )

( )

:

:



W

F x

B n

Free Suface of Water
x

Bottom of Water

n d dx

q w






 = 


 = 





 ･･････････････････････････････････････(77) 

  

Therefore, by deforming in the same way as Eq. (70), the above Eq. (76) can be written as follows : 
  

2 2

2 2 2 2

( )
2

( ) ( ) 0
2 2

F B

U U

W W

W

W W W W

W W

W W

u w
U u dx w U u dx

x

u w u w
U U u dz U U u dz



 

 + 
− +  + + 

 

   − −   
+ + + − + + =   

      

 

 




  ･･････････････(78) 

  

Here, the continuous condition of flow similar to Eq. (71), and the same kinematic condition [K] as 

Eq. (72) hold for the underwater side, as follows : 
 

( ) ( ) 0
U D B

W W W

W

U u dz U u dz w dx

w

x U



+ − + + =



= 
 

  

 ･････････････････････････････(79) 

 
By using the above conditions, Eq.(78) can be deformed as follows : 

  

2 2 2 2 2 2

0
2 2 2F B U D

W W W W W W

W W W W

u w u w u w
u w dx u w dx dz dz

U

 + − −
− + + + − = 

 
   

  ････････(80) 

 
Here, as in Eq. (74), if we omit the minute quantities over the 3rd order and approximately replace 

the water surface 
F
  with 0z = , Eq. (80) can be written as follows : 
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2 2 2 2

0

0
2 2F B U D

W W W W

W W W W
z

w u w u
u w dx u w dx dz dz

=

− −
− + − + =   

  ･･･････････････(81) 

  

Furthermore, by setting the control surface to infinite distance similar to Eq. (75), the boundary 

integrals on 
F
  and 

D
  affected by trailing wavy flows 

W
u  and 

W
w  remain only and the following relation 

can be obtained : 

2 2
0

0 2

W W

W W z
x

w u
u w dx dz



− −=
=

−
 = 


 


  ･･････････････････････････････････････(82) 

 

Now, the wavy velocities 
W

u  and 
W

w  at the downstream are related between the aerial and 

underwater sides, by referring the Green's functions, 
AG  in Eq. (18) and 

W
G  in Eq. (20), as follows : 

 

( ) ( )

( ) ( )

W

W

A

A

u z u z

w z w z

− = − 


− = 




 ････････････････････････････････････････････････････････(83) 

 

By the above relation, the integral of the 2nd term in Eq. (82) can be written by the velocity components 

Au  and 
Aw  on the aerial side, as follows : 

 

2 2 2 2
0

02 2

W W A A

xx

w u w u
dz dz



−
==

 − −
= 


 

 
  ･･･････････････････････････････････(84) 

 

Therefore, coupling both Eqs. (82) and (84), the following relation is obtained as : 
 

2 2

0 02
W W

A A

z
x

w u
dz u w dx

 

− =
=

−
= 


 


  ････････････････････････････････････････(85) 

Here, this result indicates that the integral on the downstream control surface in the aerial side can 

be replaced with the integral on the still water surface in the underwater side. 
 

Adopting the above relation into the 2nd term of Eq. (75), the wave-making resistance 
W

R  can be 

expressed as the sum of integrals of the product of x-z directional velocity components in both aerial and 

underwater sides over the still water surface, as follows : 
  

0

W

A A W W

A
z

R
u w u w dx





− =

= +    ･･････････････････････････････････････････････(86) 

 
 

Here, the x-component 
Au  of the aerial disturbed flow can be written by differentiating Eq. (19) with 

x, as follows : 

A Au u u= +    ･･････････････････････････････････････････････････････････････(87) 
 
 

Then, the wavy component 
Au  has the following relation on the still water surface 0z = , according to 

Eqs. (18) and (20). 

( 0)A W on zu u == −   ･･･････････････････････････････････････････････････････(88) 
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Using both Eqs. (87) and (88), the following relation is obtained : 

 

( 0)
WA on zu u u =+ =  ････････････････････････････････････････････････････(89) 

 
Also, the z-component of the disturbed flow has the following relation, according to the water surface 

condition [K] in Eq. (7). 
 

( 0)
WA on zw w ==  ･････････････････････････････････････････････････････････(90) 

Hence, the wave-making resistance 
W

R  in Eq. (86) can be rewritten as follows, taking into account 

Eqs. (89) and (90). 
 

( ) 
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W

A W A A

A
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R
u u w dx u w dx



 

− − ==
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   ････････････････････････････････････(91) 

 
 

Furthermore, using the wave slope 

x






 in Eq. (72), 

W
R  above can be calculated in the following form : 

 


0

W

A
z

R
U u dx

x








− =


= 

   ･･････････････････････････････････････････････････(92) 

 

Here, u


 is the aerial vortex flow with the underwater mirror image, and its upstream and 

downstream flows damp at 
2(1/ )O x  in the far distance.  Therefore, the numerical calculation for the 

above formula is easily performed. 
 
 
 
   

5. 2. 2  Expression of the wavy disturbed velocity at far downstream 
 

In preparation for the next section, let us consider the expression of the aerial disturbed flow caused 

by wave generation at far downstream. 
 

The wave height  , expressed in the form of the velocity potential in Eq. (21), can be denoted by Au  

and 
W

u , as follows :  

( )
0

0

1
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z
u u

U 
 

=
= − 

−
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

 ･･････････････････････････････････････････････(93) 

 

Here, by using the both Eqs. (87) and (88),   can be expressed as follows : 
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*
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*
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  

 
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=

= =

= − 
−

=  = 
−

− − + 
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

  ･･･････････････････(94) 

 

The above equation is consistent with Eq. (24) expressed in the level of Green's function.  And by 

solving this for Au  on the still water surface, the following relation is obtained : 
 

 * *

00 0A z z
u U u  

= =
= −   ･･･････････････････････････････････････････････････(95) 
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Here, at far downstream, the double model flow u
 disappears and the wave height   has the form of 

Eq. (40), so the x-directional component Au  of wavy flow on 0z =  has the simple following form : 
  

  ( )* * *

0 0 00
sinA z xx

u U U Z x    
= =→

= − − ～   ･･････････････････････････････････(96) 

  

Thus, the asymptotic form of the wavy disturbed velocity potential  A


 in the aerial side at the 

downstream can be expressed by considering the form of AG   in Eq. (18) for the z direction, as follows : 
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Therefore, the wavy velocity components Au  and Aw  in the x and z directions at far downstream are 

obtained respectively, as follows : 
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5. 2. 3  Consideration (B) for the formula of wave-making resistance 
 

In this section, let us reconsider the wave-making resistance formula, shown in Eq. (75), by using the 

asymptotic expressions of wavy disturbed velocities in the previous section. 
 

First, the 1st term of Eq. (75) is denoted by 1 , and its integrand can be rewritten by using Eqs. (87), 

(95) and (72), as follows : 
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Accordingly, by integrating the above equation over the still water surface, 1  can be expressed as 

follows : 
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Here, the 2nd term is deformed by using the conditions that the wave height   is not generated at the 

upstream ( )x = −  and is related to 
Au  as Eq. (96) at the downstream ( )x = . 

 

Next, let us consider the 2nd term, denoted by 2 , in Eq. (75).  Since the wavy flows Au  and Aw  at far 

downstream are expressed by Eq. (98), the integral for the z-direction can be performed analytically and 

the explicit expression is yielded, as follows : 
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Therefore, adding 1  in Eq. (100) and 2  in Eq. (101), the wave-making resistance 
W

R  in Eq. (75) is 

rewritten as follows : 
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Here, the 2nd term above is expressed in terms of the amplitude Z  of the free wave at downstream, 

by using Eq. (98). 
     

5. 2. 4  Consideration (C) for the formula of wave-making resistance 
 

In this Consideration (C), let us combine the results of the previous Considerations (A) and (B).  

Accordingly, by equating Eqs. (92) and (102), which are calculation formulae of the wave-making 

resistance 
W

R  derived by various considerations in Sections 5.2.1 and 5.2.3, a highly meaningful relation 

can be achieved, as follows : 
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Using the result above, 
W

R  in Eqs. (92) and (102) can finally be expressed in the following simple form : 
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According to the above formula, the wave-making resistance is explicitly determined as a quantity 
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corresponding to the square of the wave amplitude Z  at the downstream, without cumbersome integral 

over an infinite interval.  Here, if 
*  and 

*

0
  defined in Eq. (16) are restored to the original   and 

0
  and 

the definition of 
0

  in Eq. (4) are recalled, the wave-making resistance 
W

R  can be expressed as follows : 
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In equation above, the value in the braces represents the wave-making resistance due to normal 

underwater disturbance without considering pressure fluctuations on the water surface.  As a result, it 

can be seen that the wave-making resistance 
W

R , which takes into account pressure fluctuations due to 

aerial disturbance, is obtained as (1 )−  times the value in the above braces. 
 

When the density ratio   is extremely small, as the case of air and water in Eq. (4), the error is at least 

quantitatively small, even if it is ignored and analyzed by the momentum theorem, as done by Bessho-

Ishikawa.  However, as the density ratio   at the interface increases to some extent, it is understood 

that the correct wave-making resistance cannot be calculated without using Eq. (105), which was derived 

in the present paper. 
 

Then, the dimensionless coefficient 
W

C  of wave-making resistance, whose calculation results are 

showed in the next chapter, is defined by : 
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6.  Examples of Numerical Calculation and Some Discussions 
 

In this chapter, the results of numerical calculation, based on the theory developed up to the previous 

chapters, are presented.  In the following, variables with 

~
( ) , such as , , , ,x z h Z    , indicate dimensionless 

lengths with wing chord c as the criterion . 
  

6. 1  Element partitioning of wing and distribution density   of vortex layer 
 

Fig. 4 shows an example of element partitioning for the NACA23015 airfoil.  In the figure, the face 

and back of the wing are divided into 40 elements each, for a total of 80 elements.  However, all 

calculations in this chapter are performed by dividing minutely the wing surface into 160 elements, which 

is double the number of elements shown in this figure. 
 

 
 
 
 

 
Fig. 4  Element partitioning of airfoil ( NACA23015 ). 
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The flow field expression of Eq. (9) in Section 2.2 was discretized by the vortex layer model using 1st 

order elements in a segmented manner, and the calculation was performed as a thick airfoil.  Details of 

this numerical method are described in Japanese paper by Hori (10).  However, the wavy term 


AG   of the 

Green's function in Eq. (18) were calculated by aggregating the vortex layers of each element into a vortex 

filament at the midpoint (9).  The numerical methods of computing the integral exponential function Ei  

in Eq. (32), which is necessary for the calculation of 


AG  , are described in detail by Hori (9) in another paper.  

In this calculation, Taylor expansion in Eq. (33) is basically used, and in addition, continued fraction and 

asymptotic expansion are used in combination depending on the case. 
 

Then, the unknown density   of vortex layer is obtained by solving a boundary value problem with 

the Green's function 
AG  as the kernel function so as to satisfy the wing surface condition.  In this case, 

we also need expressions for the derivative of 
AG  with respect to x and z.  For more information on these, 

please refer to Hori's papers (8), (9). 
   

    
   

Fig. 5  Distribution density   of the vortex layer             Fig. 6  Lift curve of NACA23015.  

of NACA4412 ( 0.1 , 8 )h = =  . 
 
 
 
 
 

Fig.5 shows the distribution density 

U




 of the vortex layer, solved by the above method.  The   

distributions indicate the face, back, and the sum of both surfaces, for a total of three curves.  These are 

calculation results for NACA4412 airfoil using the so-called normal mirror image model, in which the 

water surface is replaced by a rigid wall.  The calculation conditions of WIG are the angle of attack of  

8 = 
 and the surfacing altitude of 

 0.1h = . 
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6. 2  Lift force 
 

First, Fig. 6 shows the lift curve of the NACA 23015 airfoil.  
L

C  on the vertical axis is defined by 

Eq. (66).  The result in the infinite fluid ( )= h , shown by the solid line, almost overlaps with the 

Bessho-Ishikawa result (3) shown by the dashed line.  It was confirmed that the numerical calculations 

using the vortex layer model were performed correctly.  The difference from experimental results of 

NACA, shown by the single-dotted line, can be attributed to the fact that viscous effects were not taken 

into account in the calculations.  Water surface effects were calculated using a normal mirror image 

model.  From this result, it can be seen that at angles of attack higher than about 4 = 
, the lift 

increases and the surface effects are ensured as the surfacing altitude is lowered.  On the other hand, at 

angles of attack lower than above, the lift decreases contrary as the altitude is lowered. 
 

Next, Fig. 7 and Fig. 8 show the calculation of water surface effects of lift force for the NACA 23015 

and NACA 4412 airfoils, respectively.  Fig. 7 compares the present calculation with the Bessho-

Ishikawa's result (4), and Fig. 8 compares it with the Kataoka-Ando -Nakatake's result (6). 
 

The single-dotted line in both figures is the result for an infinite fluid ( )= h .  The solid lines with 

markers ● and ◆ are the calculation result for the flow field at high speed limits, which is represented 

by placing a slightly weaker vortex of 
*(1 2 )−    at the mirror image position in the water for an aerial 

vortex of strength  , as shown in Eq. (54) in Chapter 4.  However, comparing this result with it of the 

normal mirror image model at low speed limits in Eq. (47) with the water surface as a rigid wall 

( equivalent to setting 
* 0 =  in Eq. (54) ), the difference between the two is not observed in both figures 

for the condition that the density ratio   is considerably small as in the case of air and water in Eq. (4), 

and two are drawn overlapping each other. 
  

    
   

Fig. 7  Surface effects of lift acting on NACA23015 .      Fig. 8  Surface effects of lift acting on NACA4412 .                      
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The results in Fig. 7 show that the results of this paper and Bessho-Ishikawa, shown by right-pointing 

arrow →, are in very good agreement for 
h =   regardless of the angle of attack  , as we found in Fig. 6. 

 

As shown in Figs. 7 and 8, the calculation results in this paper, which take into account the water 

surface effects, are generally consistent with other results, Bessho-Ishikawa and Kataoka et al. shown by 

dashed line, up to 4 = 
.  However, when the angle of attack increases to 6 , 8 =  , there is a tendency 

to calculate a larger lift force than the other results, especially when the surfacing altitude  
h  is low. 

 

Considering the water surface effects, even for the same angle of attack of 4 = 
, the NACA23015 

airfoil in Fig. 7 shows a decrease in lift as the surfacing altitude drops below 0.1=h .  In contrast, the 

NACA4412 airfoil in Fig. 8 seems to have the opposite tendency to increase lift.  Accordingly, it can be 

seen that the lift characteristics due to water surface effects differ depending on the airfoil shape. 
    

6. 3  Water wave profile 
 

Fig. 9 shows the wave profile ( )/ c =  generated by the NACA4412 airfoil for the four speed ranges 

1, 2, 3,10
n

F = .  The solid lines are calculated using the vortex distribution    in Fig. 5 under the same 

conditions 0.1, 8h = =  , by applying Eq. (39) in Chapter 3.  Here, nF  on the horizontal axis is the 

Froude number, which is the dimensionless speed of the advanced velocity U  normalized on the chord 

length c, and is defined as follows : 

0

1
n

U
F

g c c
= =   ･･･････････････････････････････････････････････････････(107) 

The vertical axis in Fig. 9 shows that the wave height value itself is minute, and the deformation of 
 
 
 
 

 
 

Fig. 9  Water wave profiles generated by NACA4412 ( 0.1, 8 )h = =  . 
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water surface caused by WIG is considerably small.  It demonstrates that the validity of approximating 

the water surface as a rigid wall in the analysis. 
 

The dashed lines are calculated by the high-speed asymptotic solution of the Green's function shown 

in Eq. (57) of Chapter 4, and provide a good approximation of the wave profile drawn by solid lines near 

the WIG, even at 1, 2nF = .  Furthermore, in the high speed range at 3,10nF = , it can be seen that the 

asymptotic wave profile is useful not only near the WIG, but also quite far away. 
 

In any case, as predicted by the asymptotic solution in Eq. (57), it indicates that the wave surface rises 

in the neighborhood of WIG. 
 
 
 
 

6. 4  Wave-making resistance 
 

Fig. 10 shows the results of examining the two types of wave-making resistance formulae proposed in 

Section 5. 2 of present paper.  
W

C  on the vertical axis is defined by Eq. (106).  The calculations are 

performed for NACA0012 airfoil, with a surfacing altitude of 0.01=h  and an angle of attack 8 = 
. 

 

The solid line marked with □ is the coefficient of wave-making resistance 
*/

W
C   of integrating on 

the still water surface over an infinite interval by using Eq. (92) in Consideration (A).  In the present 

calculation, the entire integral interval on the still water surface ( 5 10 )−  x  was divided into a total of 

1580 segments.  The numerical integral was performed in minute increments of 0.002 =x  near the 

trailing edge (0.9 1.1) x  and in increments of 0.01 =x  for most of the rest. 
    

    
 
 
Fig. 10  Wave-making resistance and wave height   Fig. 11  Ratio of lift force to wave-making resistance 

      acting on NACA0012 ( 0.01 , 8 )h = =  .               acting on NACA23015 ( 4 )=  . 
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On the other hand, the dashed line marked with ● is calculated by the square of the amplitude Z  

of the free wave in the downstream, as shown in the following simple formula, which is a rewrite of 

Eq. (104) in Consideration (C) by definition of Eqs. (106) and (107). 
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Here, the above ( )/ ZZ c =  is drawn in the same figure by a single-dotted line marked with △. 
 
 

As a result, it can be seen that the two curves marked by □ and ● are in good agreement, even though 

they were obtained using different calculation formulae.  For both curves, the values 
*/

W
C   peak at 

around 0.8nF = .   This confirmed numerically that the wave-making resistance value of the WIG can be 

calculated using Eq. (104) without the troublesome integral over the water surface as in Eq. (92).  

However, at speeds slower than 1nF = , the value of ● obtained by 
2

Z  is slightly larger than that of □.  

This may also be related to the length of entire integral interval and numerical increments on the still 

water surface mentioned above, so the reason should be further investigated. 
 

Fig. 11 shows the lift-to-drag ratio / WLC C  of the aerodynamic forces acting on a NACA23015 airfoil 

with an angle of attack 4 = 
 and surfacing altitudes 0.075, 0.150, 0.225h = , and is organized based on 

nF .  The lift force LC  in the numerator is shown in Fig. 7, and the drag WC  in the denominator is the 

wave-making resistance.  In this case, the ratio takes its minimum value at around 1.2nF = .  This is 

because the lift force LC  in the numerator remains nearly constant under above conditions of   and 
h  

as shown in Fig. 7, while the wave-making resistance 
WC  in the denominator reaches its peak value at 

this point.   Then, regardless of the Froude number nF  on the horizontal axis, this ratio increases 

slightly as the surfacing altitude rises.  This is also thought to be because the wave-making phenomena 

wane as the surfacing altitude 
h  from the water surface rises, resulting in a smaller wave-making 

resistance value 
WC  in the denominator. 

 

In addition, at low altitude of 0.075=h , the ratio / WLC C  in present paper, marked by ■, is shown 

in good qualitative and quantitative agreement with the Bessho-Ishikawa calculation, drawn by the 

unmarked solid line.  Accordingly, the validity of the calculations in this paper for the wave-making 

resistance value WC  of the WIG was also confirmed. 
 
 
 
 
 
 
 

7.  Concluding Remarks 
 

The water surface effects of WIG were analyzed for a 2-dimensional problem in which pressure 

fluctuations on the water surface due to aerial disturbance were correctly considered.  And a new form 

of Green's function considering water wave generation caused by aerial vortices was derived by Fourier 

transform method, taking into account the effect of water surface deformation on the aerial side, which 

has been neglected in the past. 
 

By examining an asymptotic form of the Green’s function, it is shown that the high-speed flow field 

due to an aerial vortex of strength    can be represented by placing a slightly weaker vortex of 
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−  ( where, 
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W

densityof Air

densityof Water




 = ) at the mirror image position under the water surface.  Then, 

an asymptotic solution of water wave profile was proposed.  In the high speed range, the wave height 

near the clockwise aerial vortex, corresponding to WIG, is obtained positively, indicating that the wave 

surface is raised. 
 

The lift force and wave-making resistance acting on the WIG were analyzed based on the momentum 

theorem, and smart calculation formulae were derived for two forces, resulting that the following two 

things were found.  The lift force can be calculated by the well-known Kutta-Joukowski’s theorem as 

well, which holds in the case of an ordinary wing.  Regarding the wave-making resistance, an explicit 

formula, by which the resistance can be calculated in proportional to simply the square of the amplitude 

Z  of trailing free waves at downstream without the need for tedious integral over the still water surface, 

is derived by detailed considerations.  And the resistance value is computed as (1 )−  times the value, 

obtained by the conventional calculation formula for the underwater disturbance. 
 

Based on the fundamental theory developed in present paper, specific numerical calculations of 

aerodynamic forces and water wave profile were also performed for thick wings such as NACA airfoils, 

and comparisons ware made with other calculation examples.  As a result of the examination, the 

validity of present theory was confirmed and a certain amount of knowledge was gained regarding the 

water surface effects of WIG. 
 

As described above, a method for calculating water surface effects on the aerodynamic characteristics 

of a 2-dimensional WIG has been proposed by constructing the new form of wave-making Green’s 

function.  Future research requires some systematic numerical calculations for various conditions and 

an extension of the theory to 3-dimensional problems. 
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