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A New Theory on the Derivation of Metacentric Radius 

Governing the Stability of Ships 
 
 
 
 

Tsutomu HORI † and Manami HORI †† 
 
 
 

Abstract 

 

In this paper, we develop a new theory on the derivation of the transverse metacentric radius which 

governs the stability of ships.  
 

As a new development in its derivation process, it was shown that the direction of movement of the center 

of buoyancy due to lateral inclination of ship is the direction of the half angle of the heel angle θ. 
 

By finding it, we were able to derive a metacentric radius worthy of its name by showing that the 

metacentric radius correctly represents the radius centered on the metacenter, which is the center of 

inclination. 
 
 
 

Keywords : Metacentric Radius, Ship’s Stability, Naval Architecture, 

          Half Angle of the Heel Angle, Movement of the Center of Buoyancy 
   
 

1.  Introduction 
 

The transverse metacentric radius BM , which governs the stability performance of ships, can be 

calculated as follows, where V is the volume of underwater portion and 
CL

I  is the quadratic moment about 

the centerline of the water plane. 
 

 CL
I

BM
V

 ･･･････････････････････････････････････････････････････････････････････････(1) 

Here, the above equation is a well-known basic formula in naval architecture.  
 

Eq. (1) for this BM  was derived by Bouguer (1), and Nowacki (2) & Ferreiro (3) have introduced the historical 

background.  It is also described by Goldberg  (4) in the US “ Principles of Naval Architecture ”, the bible of 

naval architecture.  More recently, it has been considered by Mégel and Kliava (5).  In Japan and other 

countries, it has been described by Takagi (6), Nishikawa (7), Sugihara (8), Ohgushi (9), Ohta & Kuwahara et 

al.(10), and Akedo (11) in the past, and recently by Nohara & Shoji (12), Barrass & Derrett (13), Ikeda & Furukawa 

et al. (14) and Shin (15) in many textbooks of naval architecture and nautical mechanics.  
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Although the result itself does not change with respect to such a basic formula for  BM  in Eq. (1), as a 

new development in its derivation process, it was shown that the direction of movement of the center of 

buoyancy due to the lateral inclination of ship is the direction of the half angle 

2


 of the heel angle θ.  By 

finding it, we were able to derive a metacentric radius BM suitable for its name by showing that the 

metacentric radius correctly represents the radius centered on the metacenter M, which is the center of 

inclination.  The process of new derivation 
(16) was published in the Journal “ NAVIGATION ” of Japan Institute 

of Navigation in 2017, with the preparedness of receiving criticism from distinguished scholars. 
 

In this paper, a new development of the derivation process  (16),(17) for metacentric radius BM  is described 

in detail. 
 
 
 
 

2.  New Derivation of Metacentric Radius BM  
 

Fig. 1 shows a three-dimensional view of the ship when it is inclined laterally by heel angle θ to the 

starboard side from upright position.  The water line is WL and the center of buoyancy is B in the upright 

state, and the water line is W'L' and the center of buoyancy is B' (18)~(23) after inclination.  The intersection 

point of the center line perpendicular to WL extending from B in the upright state and the action line of the 

buoyancy vertically upward from B' in the inclined state is the so-called “ transverse metacenter ”, M .  
 

Since both hull sides of the ship can generally be assumed to be perpendicular to the water surface near 

Fig. 1  Three-dimensional view of the wedge-shaped exposed and immersed portions of a laterally inclined ship. 
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the water line, the exposed part WoW  and the submerged part LoLare right triangles similar in all 

cross-sections from the stern AP to the bow FP, although the waterline width 2 y differs in the longitudinal 

direction x.  Therefore, AP - WoW’- FP and AP - LoL’- FP are three-dimensionally wedge-shaped. 
 

Since the volume V of ship’s underwater portion remains the same after inclination, the volumes of the 

wedge-shaped AP - WoW’- FP in the exposed portion and the wedge-shaped AP - LoL’- FP in the immersed 

portion are equal.  If the wedge-shaped volume is v, and the centroid of the exposed volume is g and the 

centroid of the immersed volume is g', we can consider that a part of the underwater volume v has moved 

from g to g'. 
 

   Therefore, the direction and distance BB  when the center of buoyancy, which is the centroid of the whole 

underwater volume V, moves from B to B' are determined as follows : 
 

 



   


BB g g

v
BB g g

V

 ･･･････････････････････････････････････････････････････････････(2) 

The result of Eq. (2) above is the dynamical law described in the textbooks (4),(6)~(15) of naval architecture 

and nautical mechanics, as in Eq.(1).  In this paper, this law will be carefully explained in Appendix A-1.  

There, in Eq. (A-9) of its Appendix, A and a for area are replaced by v and V for volume. 
 
 
 
 

2. 1  Consideration on the direction of movement BB  of the center of buoyancy 
 

   Fig. 2 depicts the cross-section of the laterally inclined ship shown in Fig. 1 at a certain ship’s longitudinal 

ordinate x.  Since the areas of the right triangles WoW  and LoL in the exposed and immersed parts 

of the cross-section are equal, they are written as a, and their centroids of area are written as c and c' 

respectively.  Since a and c, c' are functions of x, the volumes v of the wedge-shaped AP - WoW’- FP and AP - 

LoL’- FP, their moving moments v gg , and the direction of gg  can be obtained by integrating from AP to 

FP in the longitudinal direction x, respectively, as follows : 
 


 



   



  





FP

AP

FP

AP

v a dx

v g g a cc dx

g g c c

 ･････････････････････････････････････････････････････････(3) 

 

Here, the line segment gg  connecting g and g' coincides with the line segment cc connecting the areal 

centroid of the right triangles WoW  and LoL in the cross-section, though the lengths are different, as 

shown in Fig. 1 and Fig. 2. 
 

Hereafter, paying attention to the right triangle LoL of the immersive part shown in Fig. 2, let's 

determine the direction of cc  according to oc  on starboard side.  This is the core of the argument in this 

paper.  Here, the heel angle due to lateral inclination is  LoL , the angle formed by oc  and the base 

oL  is Loc   , and the length of the triangular base oL corresponding to the half width of the water line 

https://vixra.org/abs/2111.0023
https://vixra.org/abs/2111.0023
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WL is y.  Here, the centroid c' of triangle oLL  is located at two-thirds of oL y  in the base direction and 

one-third of tan LL y  in the height direction, so the tangent of φ is obtained as : 
 

1

1 1 1
tan

13 2 2
tan tan

2 2

3

1
tan tan

2



 

 

 


   



 

    
  

LL LL

oLoL

y

y
 ････････････････････････････(4) 

 

This result of the former in the above equation means that if we extend oc  through the centroid c' of the 

triangle oLL , it will pass through the midpoint of the opposite side tan LL y , which confirms what 

geometry teaches. 
 

Now, if we assume that 1 and 1 in the 2nd. line of Eq. (4), the angle   can be Taylor-expanded 

with respect to θ as follows : 

1

3

3
3 3

1
tan tan

2

1 1 1
tan tan

2 3 2

1 1

2 3 24 3

 

 

 
 


 

  
 

 
      

 

   
                  

   

 

3

2 8

 
       ･････････････････････････････････････････････････････････････(5) 

 

Strictly speaking,   is slightly larger than        according to the above equation, but the following 

relational expression is obtained when the heel angle θ is small to some extent, actually up to about 20 °, in 

the range where W and L' in Fig. 2 are on both hull sides.  Therefore, we find that   is a half angle of θ as 

follows : 

2
L o c


     ･････････････････････････････････････････････････････････････(6) 

 

By doing so, the direction of movement of oc , i.e. cc , could be correctly determined within the range of 

linear theory regarding the heel angle θ in the cross-section at longitudinal ordinate x . 
 

Therefore, it is found from Eqs. (2), (3) and (6) that BB in underwater volume moves in the same direction 

as gg in wedge shape and cc in cross-section, as follows : 
 

 
2

L BB Lo g Loc


           ････････････････････････････････････････(7) 

 

The conclusion of this section is that the direction L BB   of movement BB from the upright center of 

buoyancy B to the inclined center of buoyancy B' is the direction of the half angle of the heel angle θ. 
 
 
 
 
 
 

2


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2. 2  Metacentric radius BM  in the true physical sense 
 

Let’s apply Eq. (7), which is a consequence of the previous section, to MBB  in the cross-section of the 

inclined ship shown in Fig. 2.  Since L BM  is a right angle, the angle MBB  can be obtained as : 
 

2 2 2
MBB L BM L BB

  
            ･･････････････････････････････(8) 

On the other hand, since the sum of the interior angles of a triangle is π, it can be written as follows : 
 

      MBB M B B  ･･･････････････････････････････････････････････････(9) 

 

Now, by using Eq. (8) in Eq. (9), the angle MB B  can be calculated as : 
  

2 2 2 2
M B B MBB

   
   

 
           

 
 ･･･････････････････････(10) 

Therefore, since the right-hand sides of Eqs. (8) and (10) are equal, the following equality relation is 

obtained. 

2 2

  
      

 
MBB M B B  ･････････････････････････････････････････････(11) 

 

From this relationship, we can find that MBB  is an isosceles triangle with transverse metacenter M 

as its vertex. As a result, we were able to show the following relation. 

Fig. 2  Metacenter and movement of the center of buoyancy in the cross-section of a laterally inclined ship. 
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BM B M  ････････････････････････････････････････････････････････････････(12) 
 

From this equality relation, it can be seen that both BM and B M are geometrically the radii of the circle 

centered on M.  In this way, we have been able to derive a metacentric radius BM worthy of the name.  We 

wouldn't like to think that it is self-righteousness of the authors to claim so. 
   

2. 3  Relationship between BM and BB  
 

Let’s find the moving distance BB of the center of buoyancy according to the explanation in the previous 

section.  Applying the cosine theorem to the triangle MBB shown in Fig. 2, the square of BB can be 

obtained by using Eq. (12), as follows : 
 

2 2 2

2 cosBB BM B M BM B M        

2 2
22 (1 cos ) 4 sin

2
BM BM


    

4
2

2

12
BM




 
      

 
 ･･･････････････････････････････････････････････････(13) 

  

Then, by taking the square root of the above equation, BB can be calculated as twice the sine component 

of the half vertex angle 

2


 for the side length BM of isosceles triangle MBB , as follows : 

 

2 (1 cos ) 2 sin
2

BB BM BM


     

3

24
BM




 
      

 
 ･････････････････････････････････････････････････････(14) 

 

Here, the bottom line of both Eqs. (13) and (14) above are the results by means of the Taylor expansion of 

cos  or sin
2


 with respect to  , assuming 1 . 

 

Therefore, when the heel angle   is somewhat small, the moving distance BB of the center of buoyancy 

can be obtained in a simple form by using only the 1st. term in the 2nd. line of Eq. (14), as follows : 
 

 BB BM BB    ････････････････････････････････････････････････････････(15) 

Hence, the result of the above Eq. (15) shows that the line segment BB is equal to the arc length BB’ 

with BM  as its radius, when   is small to some extent. 
 

Therefore, the metacentric radius BM can be calculated by solving Eq. (15) as follows : 
 






BB
BM  ･････････････････････････････････････････････････････････････････(16) 

The above Eq. (16) shows that BM can be determined by dividing the moving distance BB of the center 

of buoyancy by heel angle  . 
   

2. 4  Moving distance BB of center of buoyancy  
 

In this section, let us consider the determination of BB by using the dynamical law of Eq. (2).  The area 

a of each of the right triangles WoW and LoL  in the cross-section shown in Fig. 2 and the line segment 

https://vixra.org/author/tsutomu_hori
https://vixra.org/author/manami_hori


 p. 7 / 17 

A New Theory on the Derivation of Metacentric Radius 

Governing the Stability of Ships 

cc  connecting their centroid can be written as follows, using the important Eq. (6), where 

2


  . 

 
3

2 2

2

1 1
tan

2 2 3

4 4
2 sec 1

3 2 3 8

a y y

c c oc y y


 

 

 
        

  


            
  

 ･･････････････････････････････(17) 

Here, in the above equation, the Taylor-expanded form for   is also given.  The moving moment a cc  

is then the product of the two in Eq. (17), and is calculated as follows : 
 

3

3 2

3 3 32

3

2
tan sec

3 2

2 11
1

3 3 8 24

a c c y

y y




 
  

 

     
                      

    

 ･･･････････････(18) 

Hence, when the heel angle   is somewhat small, the moving moment a cc  can be obtained by using 

the 1st. order term with respect to   in the above Eq. (18), as follows : 
 

32

3
a cc y    ･････････････････････････････････････････････････････････････(19) 

Now, by integrating the above Eq. (19) from the stern AP to the bow FP in the longitudinal direction x, as 

shown in Eq. (3), the moving moment v gg  of the wedge-shaped volume v can be calculated as follows : 
 

3

3

2

3

( 2 )

12

FP FP

A P A P

FP

CL
AP

v g g a c c dx y dx

y
dx I



 

    

  

 

  ･･･････････････････････････････(20) 

 

Here, since the integral in the above Eq. (20) corresponds to the quadratic moment of the rectangle of 

height 2y  and width dx , it represents the quadratic moment 
CL

I  with respect to the center line of the water 

plane, as shown by the single-dotted line in Fig. 1.  Therefore, the moving distance BB of the center of 

buoyancy can be determined by the latter part of the dynamical law in Eq. (2), as follows : 
 


  

CL
Iv g g

BB
V V

 ･････････････････････････････････････････････････････(21) 

The above Eq. (21) shows that the moving distance BB can be calculated by dividing the product of the 

quadratic moment 
CL

I  and the heel angle θ shown in Eq. (20) by the underwater volume V of a ship. 
    

2. 5  Calculation formula for metacentric radius BM  
 

According to the results of Sections 2.3 and 2.4, the transverse metacentric radius BM can be determined 

by substituting the moving distance BB obtained in Eq. (21) for the numerator of the right-hand side in 

Eq.(16), as follows : 



 




  

CL

CL

I

IBB VBM
V

 ･･････････････････････････････････････････････(22) 
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The metacentric radius BM of the above Eq. (22) can be calculated only by the geometric shape of the 

ship under the water plane, regardless of the heel angle θ which cancels out the numerator and denominator.  

Therefore, BM  has a meaning as a parameter which governs the stability performance of a ship.  The 

result is a well-known formula that can be found in any textbook (4),(6)~(15) of naval architecture and nautical 

mechanics. 
 
 
 
 

3.  Some Considerations 
 

In this chapter, we will consider the explanations given in the textbooks so far. 
 

In most textbooks (4),(6),(7),(9),(10),(11), the moving direction of the center of buoyancy due to lateral inclination 

is approximated as follows, by assuming that heel angle θ in Fig. 2 is tends to zero. 
 

2

BB WL

MBB






  


 ･･････････････････････････････････････････････････････････････(23) 

As a result, the moving distance BB of the center of buoyancy is often described as : 
 

tan BB BM  ･････････････････････････････････････････････････････････････(24) 

Here, Goldberg (4), Nishikawa (7), Ohgushi (9), and Akedo (11) specify the Eq. (23). 
 

In addition, Sugihara (8), Nohara & Shoji (12), Barrass & Derrett (13), and Shin (15) do not specify the direction 

of movement BB , but they write its moving distance as well as Eq. (15) in Section 2.3, as follows : 
 

 BB BM  ････････････････････････････････････････････････････････････････(25) 

On the other hand, recent work by Ikeda & Furukawa et al. 

(14) accurately calculated the moving 

component parallel to WL , not the moving distance BB .  If we use the results of Eqs. (11) and (12) and 

write it in the notation of this paper, then it coincides with Eq. (14) in Section 2.3, as follows : 
 

cos sin
2

2 sin 2 sin
2 2

BB B M

BB B M BM




 


  


   


 ･･････････････････････････････････････(26) 

After all, the correct direction of movement of BB is still not mentioned, and the above researchers, other 

than the authors, derive the result by avoiding it. 
    

4.  Summary of the Results Obtained 
 

It is claimed in this paper that the direction L BB   of movement BB from the upright center of 

buoyancy B to the inclined center of buoyancy B' is the direction of the half angle of the heel angle θ due to 

lateral inclination as follows : 
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 
2

L BB Lo g Loc


           ･･････････････････････ previously written (7) 

Here, the above equation is obtained by the moving direction Loc  of a partial area from the exposed 

to the immersed portion, as given in Eq. (6). 
 

As a result, we obtained the following relationship using by Eq. (7) of Section 2.2. 
 

2 2

  
      

 
MBB M B B  ･･･････････････････････････ previously written (11) 

By doing so, since we were able to show that MBB  shown in Fig. 2 is an isosceles triangle with 

metacenter M  as its vertex, the following Eq. (12) was found as the radii centered on the metacenter M . 
 

BM B M  ･･････････････････････････････････････････････ previously written (12) 

In this way, it is considered that the metacentric radius BM suitable for the name could be derived 

geometrically. 
 

As mentioned above, the conclusions of this paper can be summarized in the above Eqs. (7), (11) and (12). 

Subsequently, in Section 2.3 onwards, the well-known formula (22) for the metacentric radius BM is 

described within the framework of the linear theory for the heel angle  , according to the usual method. 
 
 
 
 

5.  Concluding Remarks  
One of the authors 

(24) has been teaching “ Hydrostatics of Floating Bodies ” as a compulsory subject in the 

Department of Naval Architecture ( currently the Naval Architecture Course (25),(26)
 ) at the Nagasaki Institute of 

Applied Science for more than ten years.  Every year, especially in the last few years, I have been guilty of 

somewhat misrepresenting the moving direction of the center of buoyancy BB due to lateral inclination 

when explaining the theory of metacenter, which is the title of this paper.  I have been lecturing on it, telling 

myself that it is an approximation by a minimal angle of inclination.  I was always going to the lecture with 

reluctant heart because I was afraid of being questioned by the excellent students. 
 

By summarizing this paper, we felt relieved from this worry.  But we thought that it should not be self-

righteous, so we submitted it.  We are prepared to receive criticism from the great scholars who already 

know the theory developed in this paper and are lecturing as such.  In addition, if the contents of this paper 

have already been published in textbooks or papers, please forgive it as a lack of searching related literature 

by an illiterate author. 
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Appendix 
 

A-1.  Movement of the centroid of whole area when a partial area moves 
 

Fig. A-1 shows the case that a square ABDC  (area A, centroid G ) transforms into an isosceles triangle 

CBE  (area A, centroid G' ), when a right triangle ABC  (gray-filled area a, centroid g ) is rotated 90° 

counterclockwise around point C and moved to a right triangle CDE  (gray-filled area a, centroid g’ ). 
 

In this Appendix A-1, let's consider the distance and direction of movement of the centroid of the whole 

area, i.e., from G of the square ABDC  to G' of the isosceles triangle CBE .  The right triangle CBD  

(white-filled area A - a, centroid o ) in Fig. A-1 is a fixed and common area before and after the movement.  

Here, the centroid G of the whole area is located geometrically on the line segment og  connecting the 

respective centroids o and g, and G' is located on the line segment og  connecting o and g'. 
 
 
 

§ 1.  General theory 
 

Firstly, we will develop the general theory without setting a specific area etc. . 
 

For the square ABDC  before the move, the following equation holds from the equilibrium of the area 

moments of a and A around point o, which is the centroid of a fixed triangle CBD . 

https://vixra.org/abs/2111.0023
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https://youtu.be/eeVg9ThjPd0
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   


    g G

a og A oG

a A
 ････････････････････････････････････････････････････････(A-1) 

Here, for simplicity's sake, we have written  gog  ,  GoG .  By the above equation, the following 

relation is obtained as : 
 

G

g

a

A
 ･･････････････････････････････････････････････････････････････････(A-2) 

 

Next, for the isosceles triangle CBE  after the move, the following equation holds from the equilibrium 

of the area moments of a and A around the point o as well. 
 

    


     
g G

a og A oG

a A
 ･･･････････････････････････････････････････････････････(A-3) 

 

Here, we have abbreviated   
gog  ,   

GoG  in the same way.  By the above equation, the following 

relation is obtained as well.  
 





G

g

a

A
 ･･････････････････････････････････････････････････････････････････(A-4) 

 

Let us now consider the trapezoid   ABEC , which combines three right triangles, two before and after 

the move and one fixed.  By Eqs. (A-2) and (A-4), the following relationship can be easily derived as : 
 

 
  

 




G G

g g

a

A
 ･･････････････････････････････････････････････････････････(A-5) 

This indicates that the scale ratio on the left side of the two small GoG  and large gog  triangles is 

equal to that on the right side.  By transforming the above equation, we can obtain the relational equation 

as follows :  


 

gG

G g

 ･････････････････････････････････････････････････････････････････(A-6) 

 

It shows that the ratio of the left side to the right side is the same in the two small GoG  and large 

gog  triangles.  Furthermore, the apex angles of both small and large triangles are clearly common as 

follows : 

   GoG gog  ･･･････････････････････････････････････････････････････････(A-7) 

 
 
 

Therefore, according to Eqs. (A-6) and (A-7) above, we can see that both small and large triangles are 

similar as follows : 
 

  GoG gog∽  ･･･････････････････････････････････････････････････････････(A-8) 

As a result of the above discussion, it can be seen that the ratio of GG  to g g , which corresponds to the 

base of both triangles, is also the same as that in Eq. (A-5), and the two are parallel.  It can be written as 

https://vixra.org/author/tsutomu_hori
https://vixra.org/author/manami_hori
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follows : 

 1


       




  

GG a a
GG g g

A Agg

GG gg

 ････････････････････････････････････(A-9) 

 

The above equation is the law of dynamics as described in textbooks (4),(6)-(15) on naval architecture and 

nautical mechanics.  There is no restriction on the size of the area ratio a / A in the 1st. equation above, 

except that it is less than one.  In this appendix, we have discussed the case where the area moves, which 

is the easiest to understand, but it can be applied by replacing a and A in the above Eq. (A-9) with v and V 

for volume and w and W for weight.  

 
 
 

§ 2.  Numerical calculations for the verification of  § 1 
 

In this section, let's set numerical values for the area etc. and do some calculations.  In that sense, the 

state of Fig. A-1 can be verified by the theory of § 1, because the position of the centroid G and G' before and 

after the move is geometrically known.  
 

As shown in Fig. A-1, the square ABDC  has a side of 3 h before the move and the isosceles triangle 

CBE  has a base of 6 h and a height of 3 h after the move, the two moving right triangles ABC and CDE

have a base and a height of 3 h.  Therefore, the whole area A, the moving area a and their ratio are written 

as follows : 
2

2

9
1

9
2

2



 

 


A h
a

a h A
 ････････････････････････････････････････････････････(A-10) 

 
 
 

Now, since the distance and direction of the movement of centroid of the whole area A due to the 

Fig. A-1  Movement of the centroid of whole area when a partial area moves. 
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movement of a partial area a are shown in Eq. (A-9), we will consider the moving distance by breaking it 

down into its horizontal and vertical components. 
 

As shown in Fig. A-1, each component in the moving distance of centroid of a partial area a is 

geometrically measured via point t , as follows : 
 

: 3

:

 


  

Horizontal gt h

Vertical t g h

　
 ････････････････････････････････････････････････････(A-11) 

Here, by the 2nd. line of Eq. (A-9), line segments GG  and gg  are parallel, so if we place point T 

corresponding to point t , both right triangles GTG  and gtg  are similar as follows : 
 

GTG g tg  ∽  ･････････････････････････････････････････････････････････(A-12) 
 

Therefore, the moving distance of centroid of the whole area A can be determined for horizontal and 

vertical direction via point T respectively, by adopting the value of Eqs. (A-10) and (A-11) into the 1st. line of 

Eq. (A-9), as follows : 
 

1 3
:

2 2

1 1
:

2 2


  



  


Horizontal GT gt h

Vertical TG t g h

　

 ････････････････････････････････････････(A-13) 

 

Then, the result of the above equation places the point G' at one-third of the height DC  of the isosceles 

triangle CBE , just above the midpoint D of the base BE .  This point G' is correctly the centroid of the 

isosceles triangle CBE .  Since this fact is consistent with what geometry teaches, we were able to verify 

that Eq. (A-9), which is derived in the general theory of § 1, is correct. 
   
  

A-2.  Lecture videos on a new derivation of metacentric radius BM  
 

The theme of this paper, in which a new derivation process for metacentric radius BM is developed, is 

lectured to 2nd year students of the naval architecture course (25),(26) as a subject of “ Hydrostatics of Floating 

Bodies ” at the university 
(25),(26) where the one of the authors (24) works. 

 

With the recent trend of remote lectures, the situation above is filmed in two parts, the 1st half (30) and 

the 2nd half (31), and on-demand teaching materials are created and uploaded as YouTube videos.  The 

explanation is in Japanese, but if you are interested, please have a look. 
 
 
   

A-3.  Introducing examples and videos on the stability theory of ships 
 

One of the authors (24) has published two typical examples and three videos on the stability theory of ships 

based on the metacentric radius, which is the main theme of this paper.  We will introduce them in this 

Appendix A-3. 
 

First, the basic example of determining the conditions under which a columnar ship with rectangular 

https://vixra.org/author/tsutomu_hori
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cross-section, made of homogeneous squared timber with arbitrary breadth and arbitrary material, floats 

stably in the upright position, was explained in the journal (36) “ NAVIGATION ” of JIN ( Japan Institute of 

Navigation ) and in the pre-print repository (37) “ viXra.org ”. 
 

As a typical example, when the specific weight of a ship is about half that of water, the theory of finding 

a stable breadth condition in the upright state is lectured in the subject of “ Theory of Ship Stability ” at the 

university (25),(26) where the 1st author (24) works.  The lecture video (32) and the shot of the confirmation 

experiment (38) in the small water tank have been uploaded to YouTube as on-demand teaching materials. 
 

In addition, we have also uploaded a lecture video (33) explaining about materials ( i.e., lighter or heavier 

than the specific weight of a timber ) which are stable in the upright state for the ship with square cross-

section. 
 

Next, the solution to the problem of finding the stable attitude of a similar columnar ship, which does not 

satisfy the above conditions and floats in the inclined position, is also explained in the same journal of JIN 

as an advanced example (39). 
 

Both the explanatory treatises and the lecture videos are explained in Japanese, but if you are interested, 

please take a look and read them. 

 

______________________________________________ 
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