viXra.org >Classical Physics

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure

 (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body by Tsutomu Hori and Manami HoriviXra: 2309.0136 [Classical Physics]

Ver. 1 : 27 Sept. 2023
Ver. 2 : 7 Mar. 2024

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

by Tsutomu HORI^{\dagger} and Manami Hori ${ }^{\dagger}$

Abstract

Summary

We recently proved that "the center of buoyancy is equal to the center of hydrostatic pressure" for floating bodies. This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not be determined was that the horizontal force would be zero due to equilibrium in the upright state.

As a breakthrough, we dared to create the left-right asymmetric pressure field by inclining the floating body with heel angle θ. In that state, the forces and moments due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle θ to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross-sectional area under the water surface.

As mentioned above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them on this viXra.org in English. Following that, in the $2^{\text {nd }}$ report, separate proofs for a semi-submerged circular cylinder and a triangular prism were also published here. Thus, we have completed the proof for floating bodies, so in this $3^{\text {rd }}$ report, we aim to prove for submerged bodies. We first prove for a submerged circular cylinder, and then apply Gauss's integral theorem to prove it clearly for an arbitrarily shaped submerged body.

> Keywords : Center of Buoyancy, Hydrostatic Pressure, Archimedes' Principle, Submerged Circular Cylinder, Arbitrary shaped Submerged Body

1. Introduction

It is a well-known fact in physics and naval architecture that the position of "Center of Buoyancy" acting on a ship is equal to the center of the volume of the geometric shape under the water surface.

[^0]
Tsutomu Hori and Manami Hori

The buoyancy taught by Archimedes' principle ${ }^{(1)}$ is clearly obtained by the surface integral of the hydrostatic pressure, but the position of the center of buoyancy is described in every textbook (on physics ${ }^{(2)}$, fluid dynamics ${ }^{(3),(4)}$, hydraulics ${ }^{(5)}$, naval architecture ${ }^{(6),(7),(8),(9),(10),(11)}$ and nautical mechanics ${ }^{(12)}$, etc.) as the center of gravity where the volume under the water surface is replaced by water. There is no explanation that it is the center of pressure due to hydrostatic pressure ${ }^{(13),(14)}$.

Recently, Komatsu ${ }^{(15)}$ raised the issue of "the center of buoyancy \neq the center of pressure? " at 2007 i in Japan, and it was actively discussed by Seto ${ }^{(16),(17)}$, Suzuki ${ }^{(18)}$, Yoshimura \& Yasukawa ${ }^{(19)}$, Komatsu ${ }^{(20)}$, Yabushita \& Watanabe ${ }^{(21)}$ and others in research committees and academic meetings of the Japan Society of Naval Architects and Ocean Engineers (hereinafter abbreviated as JASNAOE). At the same time, in Europe, the problem was studied in detail by Mégel \& Kliava ${ }^{(22),(23)}$ in terms of potential energy. However, no one was able to solve this issue.

On the other hand, it is also an indisputable fact that the well-known center of buoyancy (i.e. the volume center of the underwater portion) is correct from the viewpoint of ship's hydrostatic stability ${ }^{(24) \sim(29)}$ (that is to say, positioning of the metacenter by calculating the metacentric radius ${ }^{(30) \sim(33)} \overline{B M}$).

In response to this unsolved problem, we considered that the reason why the vertical center of pressure could not be determined was because the horizontal forces equilibrated to zero in the upright state. To solve this problem, Hori ${ }^{(34),(35)}$ dared to create the left-right asymmetric pressure field by inclining the ship with heel angle θ, and attempted in 2018 to integrate the hydrostatic pressure acting on the ship surface. Then, the forces and moments acting on the inclined ship were calculated correctly with respect to a tilted coordinate system fixed to the ship. In this case, both orthogonal components of the force acting on the ship are not zero. Therefore, it was shown that the center of pressure at the inclined state can be determined. By setting the heel angle θ to zero, we proved that the center of hydrostatic pressure coincides with the centroid of cross-sectional area under the water surface in the upright state, i.e., the well-known center of buoyancy. First, a columnar ship with the rectangular cross-section ${ }^{(34)}$ was proved and its proof is lectured ${ }^{(36),(37)}$ to $2^{\text {nd }}$ year students of the naval architectural engineering course ${ }^{(38),(39)}$ in the "Hydrostatics of Floating Bodies" of the university where one of the authors ${ }^{(40)}$ works. And then an arbitrary cross-sectional shape ${ }^{(35)}$ was proved and published in the Journal "NAVIGATION" of Japan Institute of Navigation (hereinafter abbreviated as JIN).

In other way, as many researchers are studying this issue with various approaches ${ }^{(41) \sim(45)}$, the discussions have deepened in JASNAOE. To sublate these discussions, we have illustrated that "the center of buoyancy is equal to the center of pressure" for a semi-submerged circular cylinder ${ }^{1 \text { st half of (46) }}$ and a submerged circular cylinder ${ }^{(47)}$ which does not change its shape under the water even if it is inclined, and for a triangular prisms ${ }^{(48)}$, using the same method ${ }^{(49)}$.

In order to put an end to the above discussions, we proved that "the center of buoyancy $=$ the center of pressure" for a submerged body with arbitrary shape ${ }^{\text {1st half of }(50)}$ using Gauss's integral theorem in 2021. Furthermore, it was published in the same journal "NAVIGATION" of JIN that it is easier to prove for a floating body with arbitrary shape ${ }^{\text {2nd half of (50) }}$ than author's previous papers ${ }^{(35), \text {, 2nd half of (49) by using Gauss's }}$ theorem in the same way ${ }^{(51)}$.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

We subsequently summarized the proofs in English for the case of the rectangular cross section (34), 1st half of (49), which is the easiest to understand, and for the floating body of arbitrary cross sectional shape ${ }^{2 \text { nd half of (50),(51) }}$ by applying Gauss's integral theorem. And we published them in viXra.org ${ }^{(52)}$ and in the bulletin of our university, Nagasaki Institute of Applied Science ${ }^{(53)}$. Furthermore, we showed an extension to the center of buoyancy for a 3-D floating body. More recently, the authors have summarized the above as new developments in the fundamental theory for hydrostatics of floating body and published it on viXra.org ${ }^{(54)}$.

As mentioned above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them on this viXra.org ${ }^{(52)}$ in English. Following that, in the $2^{\text {nd }}$ report ${ }^{(55)}$, separate proofs for a semi-submerged circular cylinder and a triangular prism were also published here. Thus, we have completed the proof for floating bodies, so in this $3^{\text {rd }}$ report, we aim to prove for submerged bodies. We first prove for a submerged circular cylinder, and then apply Gauss's integral theorem to prove it clearly for an arbitrarily shaped submerged body.

We would like to report all of you smart readers about the two proofs for submerged bodies.

2. Positioning of the Center of Hydrostatic Pressure \boldsymbol{C}_{P} Acting on the Submerged Circular Cylinder

In Chapter 2, we apply to the submerged circular cylinder ${ }^{(47), 1 \text { st half of (57) the same method developed }}$ for floating bodies (e.g., rectangular ${ }^{(34),(36),(37), ~ 1 s t ~ h a l f ~ o f ~(49),(52),(53), ~ t r i a n g u l a r ~}{ }^{(48), ~ 2 n d ~ h a l f ~ o f ~(55),(56), ~ s e m i-s u b m e r g e d ~}$ circular cylinder ${ }^{1 \text { st }}$ half of (46),(55),(56) and an arbitrary shaped (35), 2nd half of (49)~(53) cross-section) by the authors already, in which the center of hydrostatic pressure is positioned by inclining the floating body laterally. It should be noted, however, in this submerged cylinder, as in the case of the semi-submerged cylinder, the cross-sectional shape does not change when it is laterally inclined.

Fig. 2.1 shows that the cross-section of a circular cylinder with radius R is submerged at water depth f to the top, and is inclined laterally by heel angle θ to the starboard side. The origin o is placed at the center of circle, which depth is $f+R$. The coordinate system fixed in space with the z-axis pointing vertically downward is $o-y z$, and that fixed to the cylinder and tilted clockwise by θ is $o-\eta \zeta$. The following analysis is performed for the latter $o-\eta \zeta$ coordinate system, using the argument ϕ measured counterclockwise from the ζ-axis as a variable.

The water depth $Z(\phi)$, denoted by capital letter, from the still water surface is expressed as:

$$
\begin{equation*}
Z(\phi)=f+R+z(\phi) \tag{2.1}
\end{equation*}
$$

Here, the small letter $z(\phi)$ on the right side is the water depth measured from the origin O downward, and is obtained on the cylinder surface $(\eta, \zeta)=(R \sin \phi, R \cos \phi)$, denoted by $c^{(\gamma)}$, as follows:

$$
\begin{align*}
z(\phi) & =(\zeta+\eta \tan \theta) \cos \theta \\
& =R(\cos \phi \cos \theta+\sin \phi \sin \theta) \\
& =R \cos (\phi-\theta) \quad \cdots \ldots \ldots . \tag{2.2}
\end{align*}
$$

Tsutomu Hori and Manami Hori

The notation in the $3^{\text {rd }}$ line of the above equation is also derived easily from Fig. 2.1. And, note that $z(\phi)$ can also take negative values above the origin o.

Hydrostatic pressure $p(\phi)$ at the cylinder surface can be written as follows, using p_{0} for the atmospheric pressure, $\quad \gamma$ for the specific weight of water, and Eq. (2.1) for the water depth $Z(\phi)$.

$$
\begin{align*}
p(\phi) & =p_{0}+\gamma Z(\phi) \\
& =p_{0}+\gamma f+\gamma(R+z(\phi)) \\
& =p_{0}+\gamma f+p^{\prime}(\phi) \quad \cdots \tag{2.3}
\end{align*}
$$

Fig. 2.1 Hydrostatic pressure $p^{\prime}=p-\left(p_{0}+\gamma f\right)$ and the center of pressure C_{P} acting on the cross-section of an inclined submerged circular cylinder.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

Here, $p^{\prime}(\phi)$ on the right-hand side of the above equation is the relative pressure to hydrostatic pressure $p_{0}+\gamma f$ at the top of the cylinder and is defined as follows:

$$
\begin{align*}
p^{\prime}(\phi) & \equiv p(\phi)-\left(p_{0}+\gamma f\right) \\
& =\gamma(R+z(\phi)) \quad . \tag{2.4}
\end{align*}
$$

The pressure shown by vector in Fig. 2.1 is this $p^{\prime}(\phi)$. It acts in the $-\boldsymbol{n}$ direction perpendicular to the cylinder surface and is zero at the top of the cylinder.

And in the figure, the outward unit normal vector \boldsymbol{n}, standing on the cylinder surface, can be written using the argument ϕ, as follows:

$$
\begin{align*}
\boldsymbol{n} & =n_{\eta} \boldsymbol{j}+n_{\zeta} \boldsymbol{k} \\
& =\sin \phi \boldsymbol{j}+\cos \phi \boldsymbol{k} \tag{2.5}
\end{align*}
$$

Here, n_{η} and n_{ζ} are the directional cosines in the η and ζ coordinates fixed to the cylinder, and \boldsymbol{j} and \boldsymbol{k} are the basic vectors in the η and ζ directions, similarly.

2.1 Forces $F_{-\eta}$ and $F_{-\zeta}$ due to pressure in the $-\eta$ and $-\zeta$ directions acting on the surface of submerged cylinder

The pressure $p(\phi)$ acting on the cylinder surface can be expressed by Eqs. (2.2), (2.3) and (2.4) in the previous section, as follows:

$$
\begin{align*}
p(\phi) & =p_{0}+\gamma f+p^{\prime}(\phi) \\
& =p_{0}+\gamma(f+R)+\gamma z(\phi) \\
& =p_{C}+\gamma R \cos (\phi-\theta) \tag{2.6}
\end{align*}
$$

In the above equation, p_{C} is defined as follows, and means the hydrostatic pressure on the y-axis, placed on water depth $f+R$, passing through the center O of circle.

$$
\begin{equation*}
p_{C} \equiv p_{0}+\gamma(f+R) \tag{2.7}
\end{equation*}
$$

The total force \boldsymbol{F} acting on the submerged cylinder is calculated by pressure integration over the cylinder surface $c^{(\gamma)}$, as follows:

$$
\begin{align*}
\boldsymbol{F} & =-\oint_{\left.c^{\gamma}\right)} p(\phi) \boldsymbol{n} d \ell \\
& =F_{-\eta}(-\boldsymbol{j})+F_{-\zeta}(-\boldsymbol{k}) \tag{2.8}
\end{align*}
$$

The $-\eta$ directional component $F_{-\eta}$ and the $-\zeta$ directional component $F_{-\zeta}$ of the above total force \boldsymbol{F} are obtained by integrating the $-\eta$ and $-\zeta$ components of the hydrostatic pressure $p(\phi)$, as follows :

$$
\left.\begin{array}{l}
F_{-\eta}=\oint_{c^{(\gamma)}} p(\phi) n_{\eta} d \ell \tag{2.9}\\
F_{-\zeta}=\oint_{c^{(\gamma)}} p(\phi) n_{\zeta} d \ell
\end{array}\right\}
$$

Tsutomu Hori and Manami Hori

Here, on the cylinder surface $c^{(\gamma)}\left(\sqrt{\eta^{2}+\zeta^{2}}=R\right)$, the line element is $d \ell=R d \phi$, and the directional cosines in the η and ζ directions of the normal vector \boldsymbol{n} are $n_{\eta}=\sin \phi$ and $n_{\zeta}=\cos \phi$ according to Eq. (2.5), so that both $F_{-\eta}$ and $F_{-\zeta}$ can be written by integration with respect to the argument ϕ.

Therefore, $F_{-\eta}$ acting in the $-\eta$ direction is expressed by using Eq. (2.6) for $p(\phi)$, as follows:

$$
\begin{align*}
F_{-\eta}= & \int_{-\pi}^{\pi}\left\{p_{C}+\gamma R \cos (\phi-\theta)\right\} \sin \phi \cdot R d \phi \\
= & p_{C} R \int_{-\pi}^{\pi} \sin \phi d \phi+\gamma R^{2} \cos \theta \int_{-\pi}^{\pi} \sin \phi \cos \phi d \phi+\gamma R^{2} \sin \theta \int_{-\pi}^{\pi} \sin ^{2} \phi d \phi \\
= & p_{C} R \int_{-\pi}^{\pi} \sin \phi d \phi+\frac{1}{2} \gamma R^{2} \cos \theta \int_{-\pi}^{\pi} \sin 2 \phi d \phi \\
& \quad+\frac{1}{2} \gamma R^{2} \sin \theta\left(\int_{-\pi}^{\pi} d \phi-\int_{-\pi}^{\pi} \cos 2 \phi d \phi\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2.10}
\end{align*}
$$

Similarly, $F_{-\zeta}$ acting in the $-\zeta$ direction is expressed as:

$$
\begin{align*}
F_{-\zeta}= & \int_{-\pi}^{\pi}\left\{p_{C}+\gamma R \cos (\phi-\theta)\right\} \cos \phi \cdot R d \phi \\
= & p_{C} R \int_{-\pi}^{\pi} \cos \phi d \phi+\gamma R^{2} \sin \theta \int_{-\pi}^{\pi} \sin \phi \cos \phi d \phi+\gamma R^{2} \cos \theta \int_{-\pi}^{\pi} \cos ^{2} \phi d \phi \\
= & p_{C} R \int_{-\pi}^{\pi} \sin \phi d \phi+\frac{1}{2} \gamma R^{2} \sin \theta \int_{-\pi}^{\pi} \sin 2 \phi d \phi \\
& +\frac{1}{2} \gamma R^{2} \cos \theta\left(\int_{-\pi}^{\pi} d \phi+\int_{-\pi}^{\pi} \cos 2 \phi d \phi\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2.11}
\end{align*}
$$

In both Eqs. (2.10) and (2.11) above, after expansion and integration by terms, the integrals of 1st, 2nd and $4^{\text {th }}$ terms in the $3^{\text {rd }}$ and $4^{\text {th }}$ lines are zero, and the integral value 2π results from the $3^{\text {rd }}$ term only. Thus, both $F_{-\eta}$ and $F_{-\zeta}$ are computed respectively, as follows:

$$
\left.\begin{array}{l}
F_{-\eta}=\gamma \cdot \pi R^{2} \cdot \sin \theta \tag{2.12}\\
F_{-\zeta}=\gamma \cdot \pi R^{2} \cdot \cos \theta
\end{array}\right\}
$$

Therefore, it is indicated that the both forces acting on the submerged cylinder are not dependent of atmospheric pressure p_{0} or submerged depth f, since the term on p_{C} is vanished. In addition, $F_{-\eta}$ and $F_{-\zeta}$ are obtained as the sine and cosine components of the buoyancy $\gamma \cdot \pi R^{2}$, as shown by F_{-z} of Eq. (2.13) in the next section, with respect to the heel angle θ.

2.2 Forces F_{-y} and F_{-z} converted in the $-y$ and $-z$ directions

In this section, let us find the horizontal and vertical components of the force acting on the submerged circular cylinder. By using $F_{-\eta}$ and $F_{-\zeta}$ obtained in Eq. (2.12) in the previous section, the horizontal component F_{-y} in the $-y$ direction and the vertical component F_{-z} in the $-z$ direction are converted as follows :

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

$$
\begin{aligned}
F_{-y} & =F_{-\eta} \cos \theta-F_{-\zeta} \sin \theta \\
& =\gamma \cdot \pi R^{2}(\sin \theta \cdot \cos \theta-\cos \theta \cdot \sin \theta) \\
& =0 \\
F_{-z} & =F_{-\zeta} \cos \theta+F_{-\eta} \sin \theta \\
& =\gamma \cdot \pi R^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =\gamma \cdot \pi R^{2}(=\text { Buoyant Force })
\end{aligned}
$$

The above results show that the horizontal component F_{-y} does not act as the combined force due to pressure integration. The vertical component F_{-z} is the product of the specific weight γ of water and the area πR^{2} of submerged circle, and is indeed the buoyant force itself generated vertically upward, as Archimedes' principle ${ }^{(1)}$ teaches.

2.3 Moments M_{η} and M_{ζ} due to pressure in the η and ζ directions acting on the surface of submerged cylinder

The clockwise moment M_{η} about the origin o due to the pressure $p(\phi)$ in the $-\eta$ direction acting on the cylinder surface $c^{(\gamma)}$ and the counterclockwise moment M_{ζ} due to the pressure in the $-\zeta$ direction can be computed by multiplying the integrand in Eq.(2.9) by ζ or η as the lever of moment respectively, as follows :

$$
\left.\begin{array}{l}
M_{\eta}=\oint_{c^{(\gamma)}} p(\phi) \zeta \cdot n_{\eta} d \ell \tag{2.14}\\
M_{\zeta}=\oint_{c^{(\gamma)}} p(\phi) \eta \cdot n_{\zeta} d \ell
\end{array}\right\}
$$

Here, if the above moments are expressed by contour integrals with respect to the argument ϕ, as in Eqs. (2.10) and (2.11) for $F_{-\eta}$ and $F_{-\zeta}$ in the Section 2.1, M_{η} becomes as :

$$
\begin{align*}
M_{\eta} & =\int_{-\pi}^{\pi}\left\{p_{C}+\gamma R \cos (\phi-\theta)\right\} R \cos \phi \cdot \sin \phi \cdot R d \phi \\
& =p_{C} R^{2} \int_{-\pi}^{\pi} \sin \phi \cos \phi d \phi+\gamma R^{3} \int_{-\pi}^{\pi} \cos (\phi-\theta) \sin \phi \cos \phi d \phi \tag{2.15}
\end{align*}
$$

And, M_{ζ} becomes as :

$$
\begin{align*}
M_{\zeta} & =\int_{-\pi}^{\pi}\left\{p_{C}+\gamma R \cos (\phi-\theta)\right\} R \sin \phi \cdot \cos \phi \cdot R d \phi \\
& =p_{C} R^{2} \int_{-\pi}^{\pi} \sin \phi \cos \phi d \phi+\gamma R^{3} \int_{-\pi}^{\pi} \cos (\phi-\theta) \sin \phi \cos \phi d \phi \tag{2.16}
\end{align*}
$$

The above results show that both equations for M_{η} and M_{ζ} are equivalent. Hence, the total counterclockwise moment M_{o} around the origin o due to pressure is zero, as follows :

$$
\begin{equation*}
M_{o}=M_{\zeta}-M_{\eta}=0 \tag{2.17}
\end{equation*}
$$

This is confirmed by the fact that the pressure acts perpendicular to the cylinder surface and is all

Tsutomu Hori and Manami Hori

directed toward the center o of the circle, as in the case of the semi-submerged circular cylinder ${ }^{1 s t}$ half of (46),(55),(56).

Further expanding Eqs. (2.15) and (2.16) for both moments and proceeding with the calculation, we obtain as follows :

$$
\begin{align*}
M_{\eta}= & M_{\zeta} \\
= & \frac{1}{2} p_{C} R^{2} \int_{-\pi}^{\pi} \sin 2 \phi d \phi+\gamma R^{3} \cos \theta \int_{-\pi}^{\pi} \sin \phi \cos ^{2} \phi d \phi \\
& \quad+\gamma R^{3} \sin \theta \int_{-\pi}^{\pi} \sin ^{2} \phi \cos \phi d \phi \\
= & 2 \gamma R^{3} \sin \theta \int_{0}^{\pi} \sin ^{2} \phi \cos \phi d \phi \quad \ldots \ldots \ldots \ldots \ldots \ldots \tag{2.18}
\end{align*}
$$

Here, in the above equation, the $1^{\text {st }}$ and $2^{\text {nd }}$ terms of $2^{\text {nd }}$ and $3^{\text {rd }}$ lines are zero, because both integrands are odd functions with respect to ϕ. And, the $3^{\text {rd }}$ term is an even function, so it is written with the integral interval folded in half.

Furthermore, by replacing the integral variable from ϕ to φ by $\varphi=\phi-\frac{\pi}{2}$, the above equation is computed as follows :

$$
\begin{align*}
M_{\eta} & =M_{\zeta} \\
& =-2 \gamma R^{3} \sin \theta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \varphi \sin \varphi d \varphi \\
& =0 \quad \ldots \tag{2.19}
\end{align*}
$$

This is because the integrand in the above equation is an odd function with respect to φ, so the integral value is zero. This result shows that the η and ζ components of the hydrostatic pressure do not cause moments around the center o of the circle in the case of the submerged cylinder, unlike the semi-submerged cylinder ${ }^{1 \text { st half of (46),(55),(56). }}$

2.4 Positioning of the center of hydrostatic pressure C_{P} for the submerged circular cylinder

To locate the center of pressure C_{P} in $o-\eta \zeta$ coordinate system fixed to circular cylinder, the hydraulic method used in the author's previous papers ${ }^{(34),(35),(46) \sim(57)}$ is applied. This method was used by Ohgushi ${ }^{(9)}$ for an example problem of the rolling gate.

Since the forces $F_{-\eta}$ and $F_{-\zeta}$ due to the hydrostatic pressure obtained in Section 2.1 act on the center of pressure $C_{P}\left(\eta_{P}, \zeta_{P}\right)$, the moments M_{η} and M_{ζ} due to the corresponding pressure obtained in Section 2.3 can be expressed respectively, as follows :

$$
\left.\begin{array}{l}
M_{\eta}=F_{-\eta} \zeta_{P} \tag{2.20}\\
M_{\zeta}=F_{-\zeta} \eta_{P}
\end{array}\right\}
$$

Therefore, the unknown coordinate $\left(\eta_{P}, \zeta_{P}\right)$ of the center of hydrostatic pressure C_{P} can be

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

determined by Eq. (2.20). Hence, the η-coordinate, η_{P}, can be determined by the combined force $F_{-\zeta}$ and the moment M_{ζ} due to the hydrostatic pressure in the $-\zeta$ direction, and the ζ-coordinate, ζ_{P}, by $F_{-\eta}$ and M_{η} in the $-\eta$ direction, by using Eqs. (2.12) and (2.19) respectively, as follows :

$$
\left.\begin{array}{l}
\eta_{P}=\frac{M_{\zeta}}{F_{-\zeta}}=\frac{0}{\gamma \cdot \pi R^{2} \cdot \cos \theta}=0 \tag{2.21}\\
\zeta_{P}=\frac{M_{\eta}}{F_{-\eta}}=\frac{0}{\gamma \cdot \pi R^{2} \cdot \sin \theta}=0
\end{array}\right\}
$$

Let us consider the above equation. For the latter ζ_{P} of vertical component, if we assume the upright state $\theta=0$ from the beginning, $\sin \theta$ in the denominator $F_{-\eta}$ will be zero, so the fraction becomes indeterminate forms and ζ_{P} cannot be determined. We were able to locate the vertical component ζ_{P} of the center of pressure, because the submerged cylinder was laterally inclined along with its $\eta \zeta$ coordinate axes, even though the shape did not change when inclined.

On the other hand, for the former η_{P}, even if the heel angle is $\theta=0$ from the beginning, the denominator $F_{-\zeta}$ can take a finite value because of $\cos \theta=1$, and horizontal component η_{P} can be determined.

As a result, the center of pressure C_{P} of the submerged cylinder is obtained in the $o-\eta \zeta$ coordinate system fixed and inclined to the cylinder, as follows. It is found that the C_{P} is located at the origin o, which is the center of the submerged circle.

$$
\begin{equation*}
C_{P}\left(\eta_{P}, \zeta_{P}\right)=(0,0) \tag{2.22}
\end{equation*}
$$

Therefore, its C_{P} is also located at the following position o in the space-fixed $o-y z$ coordinate system and can be determined without any need for coordinate transformation, unlike the semi submerged case ${ }^{1 \text { st half of }(46),(55),(56)}$.

$$
\begin{equation*}
C_{P}\left(y_{P}, z_{P}\right)=(0,0) \tag{2.23}
\end{equation*}
$$

The both Eqs. (2.22) and (2.23) above is correctly indicates the figure centroid of the submerged circle. Hence, we were able to prove that the center of hydrostatic pressure is equal to the well-known center of buoyancy even for submerged bodies, as in the case of floating bodies ${ }^{(34) \sim(37),(46),(48) \sim(56)}$ published by authors already.

Tsutomu Hori and Manami Hori

3. Positioning of the Center of Hydrostatic Pressure Acting on an Inclined Submerged Body with Arbitrary Shape

In Chapter 3, we apply the same method as used in the previous Chapter 2, in which the submerged circular cylinder is inclined laterally, to the submerged body with the arbitrary shape ${ }^{1 \text { st half of }(50),(51)}$. It is then proved that the center of hydrostatic pressure is equal to well-known center of buoyancy by using Gauss's integral theorem, which has already been applied to floating bodies with arbitrary shape by the authors ${ }^{2 n d}$ half of (50) $\sim(53)$.

Fig. 3.1 shows the cross-section of an arbitrary shaped body submerged at water depth f to the top, inclined laterally about its top by heel angle θ to the starboard side. The origin o is placed at the top of submerged body. The coordinate system fixed in space with the z-axis pointing vertically downward is $o-y z$, and that fixed to the body and tilted clockwise by θ is $o-\eta \zeta$. The following analysis is performed for the latter inclined $o-\eta \zeta$ coordinate system.

The water depth Z, denoted by capital letter, on the surface (η, ζ) of submerged body from the still water line is expressed as :

$$
\begin{align*}
Z & =f+z(\eta, \zeta) \\
& =f+(\zeta+\eta \tan \theta) \cos \theta \\
& =f+(\zeta \cos \theta+\eta \sin \theta) \tag{3.1}
\end{align*}
$$

Here, in the above equation, the small letter z on the right-hand represents the water depth measured from the top o.

Hydrostatic pressure p at the body surface, denoted by $c^{(\gamma)}$, can be written as follows, by using p_{0} for the atmospheric pressure, γ for the specific weight of water, and the $1^{\text {st }}$ line of Eq. (3.1) for the water depth Z.

$$
\begin{align*}
p & =p_{0}+\gamma Z \\
& =p_{0}+\gamma f+\gamma z(\eta, \zeta) \\
& \equiv p_{0}+\gamma f+p^{\prime}(\eta, \zeta) \tag{3.2}
\end{align*}
$$

Where, p^{\prime} on the right-hand side of the above $3^{\text {rd }}$ line is the relative pressure to hydrostatic pressure $p_{0}+\gamma f$ at the top of submerged body and is defined by using Eq.(3.1), as follows :

$$
\begin{align*}
p^{\prime}(\eta, \zeta) & \equiv p-\left(p_{0}+\gamma f\right) \\
& =\gamma z(\eta, \zeta) \\
& =\gamma(\zeta \cos \theta+\eta \sin \theta) \tag{3.3}
\end{align*}
$$

Here, the pressure shown by vector in Fig. 3.1 is the above relative pressure p^{\prime}. It acts in the $-\boldsymbol{n}$ direction perpendicular to the body surface and is zero at the top of body.

Then, \boldsymbol{n} is the outward unit normal vector standing on the body surface, and as in the case of circular cylinder in the previous chapter, is written as follows :

$$
\begin{equation*}
\boldsymbol{n}=n_{\eta} \boldsymbol{j}+n_{\zeta} \boldsymbol{k} \tag{3.4}
\end{equation*}
$$

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

Here, n_{η} and n_{ζ} are the directional cosines in the η and ζ coordinates fixed to the body, and \boldsymbol{j} and \boldsymbol{k} are the basic vectors in the η and ζ directions, similarly.

3.1 Components $F_{-\eta}$ and $F_{-\zeta}$ of the total force due to hydrostatic pressure in the $-\eta$ and $-\zeta$ directions acting on the submerged body

The total force \boldsymbol{F} acting on the submerged body is calculated by pressure integration over the body surface $c^{(\gamma)}$ with the line element $d \ell$, as follows:

Fig. 3.1 Hydrostatic pressure $p^{\prime}=p-\left(p_{0}+\gamma f\right)$ and the center of pressure C_{P} acting on the cross-section of an inclined submerged body with arbitrary shape.

Tsutomu Hori and Manami Hori

$$
\begin{align*}
\boldsymbol{F} & =-\oint_{c^{(\gamma)}} p(\eta, \zeta) \boldsymbol{n} d \ell \\
& =F_{-\eta}(-\boldsymbol{j})+F_{-\zeta}(-\boldsymbol{k}) \tag{3.5}
\end{align*}
$$

The $-\eta$ directional component $F_{-\eta}$ and the $-\zeta$ directional component $F_{-\zeta}$ of the above total force \boldsymbol{F} can be obtained by integrating the $-\eta$ and $-\zeta$ components of the hydrostatic pressure $p(\eta, \zeta)$ in Eq. (3.2), as follows :

$$
\left.\begin{array}{rl}
F_{-\eta} & =\oint_{c^{(\gamma)}} p(\eta, \zeta) n_{\eta} d \ell \\
& =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+p^{\prime}(\eta, \zeta)\right\} n_{\eta} d \ell \tag{3.6}\\
F_{-\zeta} & =\oint_{c^{(\gamma)}} p(\eta, \zeta) n_{\zeta} d \ell \\
& =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+p^{\prime}(\eta, \zeta)\right\} n_{\zeta} d \ell
\end{array}\right\}
$$

In proceeding with the calculation, the $3^{\text {rd }}$ line of Eq. (3.3) is used for the relative pressure p^{\prime} and the termwise integration is performed respectively. Then, $F_{-\eta}$ is calculated as:

$$
\begin{align*}
F_{-\eta} & =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+\gamma(\zeta \cos \theta+\eta \sin \theta)\right\} n_{\eta} d \ell \\
& =\oint_{c^{(\gamma)}}\left(p_{0}+\gamma f\right) n_{\eta} d \ell+\gamma \cos \theta \oint_{c^{(\gamma)}} \zeta n_{\eta} d \ell+\gamma \sin \theta \oint_{c^{(\gamma)}} \eta n_{\eta} d \ell \tag{3.7}
\end{align*}
$$

Similarly, $F_{-\zeta}$ is calculated as :

$$
\begin{align*}
F_{-\zeta} & =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+\gamma(\eta \sin \theta+\zeta \cos \theta)\right\} n_{\zeta} d \ell \\
& =\oint_{c^{(\gamma)}}\left(p_{0}+\gamma f\right) n_{\zeta} d \ell+\gamma \sin \theta \oint_{c^{(\gamma)}} \eta n_{\zeta} d \ell+\gamma \cos \theta \oint_{c^{(\gamma)}} \zeta n_{\zeta} d \ell \tag{3.8}
\end{align*}
$$

Let us now apply the following two-dimensional ($\eta \zeta$ - plane) Gauss's integral theorem to the above contour integral in order to convert the line integral into an areal integral, same as the case of an arbitrary shaped floating body ${ }^{2}$ nd half of (50)~(53).

$$
\left.\begin{array}{l}
\oint_{c} u(\eta, \zeta) n_{\eta} d \ell=\iint_{A} \frac{\partial u}{\partial \eta} d A \tag{3.9}\\
\oint_{c} v(\eta, \zeta) n_{\zeta} d \ell=\iint_{A} \frac{\partial v}{\partial \zeta} d A
\end{array}\right\}
$$

In the above theorem, n_{η} and n_{ζ} are the directional cosines of the outward unit normal vector \boldsymbol{n} in η and ζ directions, as shown in Eq.(3.4) and Fig. 3.1.

Then, $F_{-\eta}$ in Eq. (3.7) can be converted to an areal integral and written as :

$$
\begin{align*}
F_{-\eta} & =\iint_{A^{(\gamma)}} \frac{\partial\left(p_{0}+\gamma f\right)}{\partial \eta} d A+\gamma \cos \theta \iint_{A^{(\gamma)}} \frac{\partial \zeta}{\partial \eta} d A+\gamma \sin \theta \iint_{A^{(\gamma)}} \frac{\partial \eta}{\partial \eta} d A \\
& =\gamma \sin \theta \iint_{A^{(\gamma)}} d A=\gamma A^{(\gamma)} \sin \theta \quad \ldots \tag{3.10}
\end{align*}
$$

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

Similarly, $F_{-\zeta}$ in Eq. (3.8) can be written as :

$$
\begin{align*}
F_{-\zeta} & =\iint_{A^{(\gamma)}} \frac{\partial\left(p_{0}+\gamma f\right)}{\partial \zeta} d A+\gamma \sin \theta \iint_{A^{(\gamma)}} \frac{\partial \eta}{\partial \zeta} d A+\gamma \cos \theta \iint_{A^{(\gamma)}} \frac{\partial \zeta}{\partial \zeta} d A \\
& =\gamma \cos \theta \iint_{A^{(\gamma)}} d A=\gamma A^{(\gamma)} \cos \theta \quad \ldots \tag{3.11}
\end{align*}
$$

From the results above, it can be seen that both forces are determined by the cross-sectional area $A^{(\gamma)}$ of the submerged body and the lateral inclination angle θ, and do not depend on the atmospheric pressure p_{0} and the submerged depth f. The reason is why the integrands of $1^{\text {st }}$ and $2^{\text {nd }}$ terms in $1^{\text {st }}$ line of both Eqs. (3.10) and (3.11) become zero and vanished.

In addition, $F_{-\eta}$ and $F_{-\zeta}$ are obtained as $-\eta$ and $-\zeta$ directional components of the buoyancy $\gamma A^{(\gamma)}$, as shown by F_{-z} of Eq. (3.12) in the next section, respectively.

3.2 Forces F_{-y} and F_{-z} converted in the $-y$ and $-z$ directions

In this section, let us find the horizontal and vertical components of the force acting on the submerged body. By using $F_{-\eta}$ and $F_{-\zeta}$ obtained in Eqs. (3.10) and (3.11) in the previous section, the horizontal component F_{-y} in the $-y$ direction and the vertical component F_{-z} in the $-z$ direction are converted as follows :

$$
\begin{aligned}
F_{-y} & =F_{-\eta} \cos \theta-F_{-\zeta} \sin \theta \\
& =\gamma A^{(\gamma)}(\sin \theta \cdot \cos \theta-\cos \theta \cdot \sin \theta) \\
& =0 \\
F_{-z} & =F_{-\zeta} \cos \theta+F_{-\eta} \sin \theta \\
& =\gamma A^{(\gamma)}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =\gamma A^{(\gamma)}(=\text { Buoyant Force })
\end{aligned}
$$

The above results show that the horizontal component F_{-y} does not act as the combined force due to pressure integration, even when the pressure field is left-right asymmetric. The vertical component F_{-z} is the product of the specific weight γ of water and the cross-sectional area $A^{(\gamma)}$ of submerged body, and is the buoyant force itself generated vertically upward, as Archimedes' principle ${ }^{(1)}$ teaches. This situation is similar to Eq. (2.13) for the submerged circular cylinder in Section 2.2.

3.3 Moments M_{η} and M_{ζ} due to hydrostatic pressure in the η and ζ directions acting on the submerged body

In this section, we shall calculate the total counterclockwise moment M_{o} around the origin o due to hydrostatic pressure acting on the surface of the submerged body. It can be calculated by superimposing the clockwise moment M_{η} due to the pressure component in the $-\eta$ direction and the counterclockwise moment M_{ζ} due to in the $-\zeta$ direction, as follows :

Tsutomu Hori and Manami Hori

$$
\begin{equation*}
M_{o}=-M_{\eta}+M_{\zeta} \tag{3.13}
\end{equation*}
$$

Here, M_{η} and M_{ζ} can be calculated by multiplying the integrand in Eq.(3.6) by ζ or η as the lever of moment respectively, in the following form :

$$
\left.\begin{array}{rl}
M_{\eta} & =\oint_{c^{(\gamma)}} p(\eta, \zeta) \zeta \cdot n_{\eta} d \ell \\
& =\oint_{c^{(\eta)}}\left\{p_{0}+\gamma f+p^{\prime}(\eta, \zeta)\right\} \zeta \cdot n_{\eta} d \ell \tag{3.14}\\
M_{\zeta} & =\oint_{c^{(\gamma)}} p(\eta, \zeta) \eta \cdot n_{\zeta} d \ell \\
& =\oint_{c^{(\eta)}}\left\{p_{0}+\gamma f+p^{\prime}(\eta, \zeta)\right\} \eta \cdot n_{\zeta} d \ell
\end{array}\right\}
$$

Now, as in the case of forces $F_{-\eta}$ and $F_{-\zeta}$ in Eqs. (3.7) and (3.8), M_{η} can be expressed as the superposition of the contour integrals along $c^{(\gamma)}$ by using Eq. (3.3) for the relative pressure p^{\prime}, as follows:

$$
\begin{align*}
M_{\eta} & =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+\gamma(\zeta \cos \theta+\eta \sin \theta)\right\} \zeta n_{\eta} d \ell \\
& =\left(p_{0}+\gamma f\right) \oint_{c^{(\gamma)}} \zeta n_{\eta} d \ell+\gamma \cos \theta \oint_{c^{(\gamma)}} \zeta^{2} n_{\eta} d \ell+\gamma \sin \theta \oint_{c^{(\gamma)}} \eta \zeta n_{\eta} d \ell \tag{3.15}
\end{align*}
$$

Similarly, M_{ζ} can be expressed as :

$$
\begin{align*}
M_{\zeta} & =\oint_{c^{(\gamma)}}\left\{p_{0}+\gamma f+\gamma(\eta \sin \theta+\zeta \cos \theta)\right\} \eta n_{\zeta} d \ell \\
& =\left(p_{0}+\gamma f\right) \oint_{c^{(\gamma)}} \eta n_{\zeta} d \ell+\gamma \sin \theta \oint_{c^{(\gamma)}} \eta^{2} n_{\zeta} d \ell+\gamma \cos \theta \oint_{c^{(\gamma)}} \zeta \eta n_{\zeta} d \ell \tag{3.16}
\end{align*}
$$

Therefore, we can apply Gauss's integral theorem in Eq. (3.9) to the above contour integrals, as in the case of forces $F_{-\eta}$ and $F_{-\zeta}$ in Section 3.1, and convert them into areal integrals.

Then, the clockwise moment M_{η} in Eq. (3.15) can be converted to an areal integral and written as follows, and is consequently obtained in proportion to the areal moment about the η-axis.

$$
\begin{align*}
M_{\eta} & =\left(p_{0}+\gamma f\right) \iint_{A^{(\gamma)}} \frac{\partial \zeta}{\partial \eta} d A+\gamma \cos \theta \iint_{A^{(\gamma)}} \frac{\partial \zeta^{2}}{\partial \eta} d A+\gamma \sin \theta \iint_{A^{(\gamma)}} \frac{\partial(\eta \zeta)}{\partial \eta} d A \\
& =\gamma \sin \theta \iint_{A^{(\gamma)}} \zeta d A \quad \ldots \tag{3.17}
\end{align*}
$$

On the other hand, the counterclockwise moment M_{ζ} in Eq.(3.16) can be written as follows, and is consequently obtained in proportion to the areal moment about the ζ-axis.

$$
\begin{align*}
M_{\zeta} & =\left(p_{0}+\gamma f\right) \iint_{A^{(()}} \frac{\partial \eta}{\partial \zeta} d A+\gamma \sin \theta \iint_{A^{(y)}} \frac{\partial \eta^{2}}{\partial \zeta} d A+\gamma \cos \theta \iint_{A^{(()}} \frac{\partial(\eta \zeta)}{\partial \zeta} d A \\
& =\gamma \cos \theta \iint_{A^{(())}} \eta d A \quad \ldots \tag{3.18}
\end{align*}
$$

From the both results above, it can be found that both moments do not depend on the atmospheric

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure

 (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Bodypressure p_{0} and the submerged depth f, as in the case of forces $F_{-\eta}$ and $F_{-\zeta}$ in Eqs. (3.10) and (3.11). The reason is why the integrands of $1^{\text {st }}$ and $2^{\text {nd }}$ terms in $1^{\text {st }}$ line of both Eqs. (3.17) and (3.18) become zero and vanished.

3.4 Positioning of the center of hydrostatic pressure C_{P} for the floating body with an arbitrary form

For the positioning of the center of pressure of the submerged body, we will use the hydraulic method by Ohgushi ${ }^{(9)}$, as in the case of the submerged circular cylinder in the previous Chapter 2.

Since the forces $F_{-\eta}$ and $F_{-\zeta}$ due to the hydrostatic pressure obtained in Section 3.1 act on the center of pressure $C_{P}\left(\eta_{P}, \zeta_{P}\right)$, the clockwise moment M_{η} and the counterclockwise moment M_{ζ} due to the corresponding pressure obtained in Section 3.3 can be expressed exactly same as Eq. (2.20) in the previous chapter, as follows :

$$
\left.\begin{array}{l}
M_{\eta}=F_{-\eta} \zeta_{P} \tag{3.19}\\
M_{\zeta}=F_{-\zeta} \eta_{P}
\end{array}\right\}
$$

Then, the total counterclockwise moment M_{o} around the origin o in Eq. (3.13) can be calculated as :

$$
\begin{equation*}
M_{o}=-F_{-\eta} \zeta_{P}+F_{-\zeta} \eta_{P} \tag{3.20}
\end{equation*}
$$

On the other hand, the moment $M_{C_{P}}$ around the point C_{P}, at which $F_{-\eta}$ and $F_{-\zeta}$ act, is computed as follows, and becomes zero.

$$
\begin{equation*}
M_{C_{P}}=-F_{-\eta} \times 0+F_{-\zeta} \times 0=0 \tag{3.21}
\end{equation*}
$$

This correctly indicates that C_{P} is the center of hydrostatic pressure due to the forces $F_{-\eta}$ and $F_{-\zeta}$.
Therefore, the unknown coordinate $\left(\eta_{P}, \zeta_{P}\right)$ of this center of pressure C_{P} can be determined by Eq. (3.18). First, the η-coordinate, η_{P}, can be determined by using Eq. (3.11) for $F_{-\zeta}$ and Eq. (3.18) for M_{ζ}, as follows :

$$
\begin{align*}
\eta_{P} & =\frac{M_{\zeta}}{F_{-\zeta}}=\frac{\gamma \cos \theta \iint_{A^{(\gamma)}} \eta d A}{\gamma A^{(\gamma)} \cos \theta} \\
& =\frac{1}{A^{(\gamma)}} \iint_{A^{(\gamma)}} \eta d A\left(=\eta_{G}\right) \tag{3.22}
\end{align*}
$$

Next, the ζ - coordinate, ζ_{P}, can be determined by using Eq. (3.10) for $F_{-\eta}$ and Eq. (3.17) for M_{η}, as follows :

$$
\begin{align*}
\zeta_{P} & =\frac{M_{\eta}}{F_{-\eta}}=\frac{\gamma \sin \theta \iint_{A^{(\gamma)}} \zeta d A}{\gamma A^{(\gamma)} \sin \theta} \\
& =\frac{1}{A^{(\gamma)}} \iint_{A^{(\gamma)}} \zeta d A\left(=\zeta_{G}\right) \tag{3.23}
\end{align*}
$$

Tsutomu Hori and Manami Hori

As a result, since the η_{P} and ζ_{P} are obtained with the form in which the areal moment about the ζ and η-axis is divided by the cross-sectional area $A^{(\gamma)}$ respectively, it can be seen that they are the η_{G} and ζ_{G} of the figure centroid position for submerged body geometrically. And, in the both equations, the specific weight γ of water and the heel angle θ have been cancelled out in the denominator and numerator respectively, so that the both results are independent of θ. Furthermore, the geometric shape of a submerged body does not change when it is laterally inclined, unlike the case of a floating body. Therefore, this shows that the center of pressure $\left(\eta_{P}, \zeta_{P}\right)$ of the submerged body in the inclined state always coincides with the centroid $\left(\eta_{G}, \zeta_{G}\right)$ of the cross-sectional area $A^{(\gamma)}$, i.e., the well-known center of buoyancy, regardless of whether it is laterally inclined or not.

Considering the above, ζ_{P} of vertical component can be obtained by offsetting the zero factor $\sin \theta$ at the heel angle $\theta \rightarrow 0$ with the denominator and numerator, as shown in Eq. (3.23). Here, if we start the calculation as the upright state $\theta=0$, both the denominator $F_{-\eta}$ and the numerator M_{η} are in equilibrium and become zero, so the fraction becomes indeterminate forms and ζ_{P} cannot be determined. This is the reason why we were able to determine the position of the center of pressure in the ζ direction as $\zeta_{P}=\zeta_{G}$ by inclining the submerged body laterally.

On the other hand, in the calculation of η_{P} in Eq. (3.22), even if the heel angle is $\theta=0$ from the beginning, the denominator $F_{-\zeta}$ takes a finite value as the cosine component of the buoyancy. Therefore, the horizontal component η_{P} can be determined as $\eta_{P}=\eta_{G}$, if we start the calculation as the upright state.

These situations described above are exactly the same as in Eq. (2.21) of Section 2.4 for the submerged circular cylinder.

As a final step, let's find the center of pressure in the upright state by setting the heel angle to $\theta \rightarrow 0$, in order to make this result clearer. Then, since the $\eta \zeta$ - coordinates tilted and fixed on the submerged body coincide with the $y z$-coordinates fixed in space and the cross-sectional area $A^{(\gamma)}$ is invariant regardless of θ, the Eqs. (3.22) and (3.23) become as :

$$
\left.\begin{array}{rl}
\left(y_{P}, z_{P}\right) & =\left(\frac{1}{A^{(\gamma)}} \iint_{A^{(\gamma)}} y d A, \frac{1}{A^{(\gamma)}} \iint_{A^{(\gamma)}} z d A\right)=\left(y_{G}, z_{G}\right) \tag{3.24}\\
\therefore C_{P} & =B
\end{array}\right\} .
$$

Therefore, this proves that the center of hydrostatic pressure C_{P} coincides with the well-known "Center of Buoyancy, B " for the submerged body.

4. Concluding Remarks

In this $3^{\text {rd }}$ report, we proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy for a submerged circular cylinder and an arbitrarily shaped submerged body by using the authors' method of inclining the body and coordinate axes laterally, as in the case of floating bodies in the $1^{\text {st }}$ and $2^{\text {nd }}$ reports ${ }^{(52),(55)}$.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

In calculating the forces and moments acting on the submerged body, the case of the submerged circular cylinder in Chapter 2 was performed by using the circumferential argument as the integral variable, and the case of the arbitrarily shaped submerged body in Chapter 3 by applying Gauss's integral theorem.

The forces and moments, which were calculated in the direction of the inclined coordinate axes, were connected via the coordinates of the center of hydrostatic pressure by using the hydraulic method, so that we fully elucidated the physical meaning of the center of buoyancy acting on the submerged bodies, as well as the floating bodies reported in author's $1^{\text {st }}$ and $2^{\text {nd }}$ papers ${ }^{(53),(56)}$.

Acknowledgments

In closing this paper, I would like to express my heartfelt gratitude to Dr. Yoshihiro KOBAYASHI, former professor of Sojo University and current president of Como-Techno Co., Ltd. in Nagasaki, Japan. He always gave warm encouragement to the author's research and recommended that this study should be published in English. I am greatly inspired by the vigorous academic spirit with which he writes about the results of his research in books ${ }^{(58) \sim(60)}$.

Finally from the $1^{\text {st }}$ author ${ }^{(40)}$, let me express the following thanks. I would like to communicate my deepest gratitude to my late teacher, Pr. Masato KURIHARA ${ }^{(61) \sim(63)}$, who cordially taught me the theory of "Hydrostatics of Ships" with detailed figures and formulas on the blackboard when I was a $1^{\text {st }}$ year undergraduate student and learned my $1^{\text {st }}$ specialized subject of naval architecture in the College of Naval Architecture of Nagasaki in Japan. Therefore, I am following the appearance of my teacher at that time from more than 40 years ago as an exemplary example, when I currently lecture Hydrostatics of Floating Bodies and Theory of Ship Stability to $2^{\text {nd }}$ year students at my university ${ }^{(38),(39)}$.

References \ddagger

(1) Archimedes : "The Works of Archimedes", On Floating Bodies, Book I \& Book II, Edited and Translated by Heath, T. L., Cambridge University Press, 1897, p.253~300.
(2) Kinbara, T. : "Fundamental Physics - Upper Volume-" (in Japanese), Chapter 7 : Fluid, Section 7.3 : Buoyancy, Shouka-bou Publishing, 1963 (March) 1st. Printing, p.144~145.
(3) Tomochika, S. : "Fluid Dynamics" (in Japanese), Chapter 2 : Hydrostatics, Gendai-Kougaku-sha Publishing, 1972 (June) Reprinted Issuance, p.6~35.
(4) Newman, J. N. : "Marine Hydrodynamics", Chapter 6 : Waves and Wave Effects, Section 6.16 : Hydrostatics, The MIT Press (Cambridge, Massachusetts and London, England), 1977, p.290~295.
(5) Honma, M. : "Standard Hydraulics" (in Japanese), Chapter 2 : Hydrostatics, Section 2.7 : Buoyancy, Maruzen Publishing, 1962 (September) 1st. Printing, p.22~23.

[^1]
Tsutomu Hori and Manami Hori

(6) Bouguer, P. : "Traité du Navire, de sa Construction, et de ses Mouvemens", (Treatise of the Ship, its Construction and its Movements), Livre II, Section II, Jombert, C., Paris, 1746, p.249~324.
(7) Lewis, E. V. (Editor) : " Principles of Naval Architecture (2nd. Revision), Volume I - Stability and Strength", Chapter 1 (written by Hamlin, N. A.) : Ship Geometry, Section 2. 1 : Archimedes' Principle, p.16, Chapter 2 (written by Goldberg, L. L.) : Intact Stability, Section 1.3 : Displacement and Center of Buoyancy, p.64, The Society of Naval Architects and Marine Engineers, Jersey City, NJ, 1988 (April) 1st Printing.
(8) Nishikawa, H. : "Primary Hydrostatics of the ship" (in Japanese), Chapter 4 : Theory of Floating Bodies, Section 4.2 : Buoyancy,Kaibun-dou Publishing, 1964 (July) $1^{\text {st }}$ Printing. p.83~85.
(9) Ohgushi, M. : "Theoretical Naval Architecture (Upper Volume) - New Revision - " (in Japanese), Chapter 1 : Water and Floating Body, Section 1.2 : Hydrostatic Pressure, p.1~3, Section 1.3 : Buoyancy, Example Problem, p.4~5, Kaibun-dou Publishing, 1971 (June) 1st Printing
(10) Motora, S. (Supervisor) : "Kinematics of Ships and Offshore Structures" (in Japanese), Chapter 1 (written by Fujino, M.) : Hydrostatics of Floating Bodies, Section 1.1 : Buoyancy, Section 1.2 : Static Equilibrium of Floating bodies, Seizan-dou Publishing, 1982 (November) 1 ${ }^{\text {st }}$ Printing, p.1~5.
(11) Ferreiro, L. D. : "Ships and Science - The Birth of Naval Architecture in the Scientific Revolution, 16001800 - ", Chapter 4 : Inventing the Metacenter, Archimedes and the Stability of Floating Bodies, The MIT Press (Cambridge, Massachusetts and London, England), 2006, Soft-Cover, p.207~209.
(12) Akedo, N.: "Basic Nautical Mechanics" (in Japanese), Kaibun-dou Publishing, 1983 (June) 1 ${ }^{\text {st }}$ Printing. (a) Chapter 2 : Dynamics of Rigid Bodies, Section 2.3.7: Center of Buoyancy, p.110~111.
(13) Hoste, P.: " Théorie de la Construction des Vaisseaux - Qui Contient Plusieurs Traitez, de Mathématique fur des Matières Nouvelles \& Curieufes-", (Theory of the Construction of Vessels), Chez Anisson \& Posuel, Lyon, 1697, p.1~211.
(14) Nowachi, H. and Ferriro, L. D.: "Historical Roots of the Theory of Hydrostatic Stability of Ships", 8th International Conference on the Stability of Ships and Ocean Vehicles, Escuela Técnica Superior de Ingenieros Navales, 2003, pp.1~30.
(15) Komatsu, M. : "Considerations on the Center of Action of Buoyancy Acting on a Floating body" (in Japanese), Boat Engineering, 2007 (December), No.93, pp.21~25.
(16) Seto, H. : "Considerations of the Center of Buoyancy - Reexamination of Komatsu's Considerations on the Center of Action of Buoyancy Acting on a Floating body -" (in Japanese), Research Committee of Propulsion and Seakeeping Performance (Japan Society of Naval Architects and Ocean Engineers), 2010 (October), No.14, pp.1~23.
(17) Seto, H. : " Some Consideration on the Center of Action of Buoyancy" (in Japanese), Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, 2011 (May), Vol.12, No.2011S-G6-22, pp.529~532.
(18) Suzuki, K. : "The Mythical Theory : the Law of the Center of Buoyancy" (in Japanese), Private Note, 2011 (January), pp.1~4.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body
(19) Yoshimura, Y. and Yasukawa, H. : "Reconsideration of the Center of Action of Buoyancy and the Stability" (in Japanese), Research Committee of Propulsion and Seakeeping Performance (Japan Society of Naval Architects and Ocean Engineers), 2011, No.16.
(20) Komatsu, M. : "Considerations on the Center of Action of Buoyancy by means of Coordinate Ttransformation" (in Japanese), Research Committee of Propulsion and Seakeeping Performance (Japan Society of Naval Architects and Ocean Engineers), 2012, No.19.
(21) Yabushita, K. and Watanabe, R. : "Relationship between the Pressure Distribution around Ship Hull and the Center of Buoyancy" (in Japanese), Research Committee of Propulsion and Seakeeping Performance (Japan Society of Naval Architects and Ocean Engineers), 2013, No. 21.
(22) Mégel, J. and Kliava, J. : " On the Buoyancy Force and the Metacentre ", 2009 (June), arXiv : 0906.1112, Classical Physics, pp.1~33.
(23) Kliava, J and Mégel, J. : "Non-Uniqueness of the Point of Application of the Buoyancy Force ", European Journal of Physics, 2010 (July), Volume 31, Number 4, pp.741~762.
(24) Hori, T. : "A Typical Example on Ship's Stability Theorem" (Exposition in Japanese), Navigation (Journal of Japan Institute of Navigation), 2021 (July), No.217, pp. 39~46.
(25) Hori, T., Hori, M. : "Theoretical Treatment on the Hydrostatic Stability of Ships (Part 1:) Stable Conditions for the Upright State", 2022 (March), viXra.org (Pre-print Repository), viXra:2203.0180 [Ver.4], Classical Physics, pp.1~16.
(26) Hori, T. : "Theoretical Procedure on the Hydrostatic Stability of Ships (Part 1:) Stable Conditions for the Upright State", The Bulletin of Nagasaki Institute of Applied Science, 2022 (December), Vol.62, No.2, Research Notes in Mathematical and Physical Science, pp.151~166.
(27) Hori, T. : "An Advanced Example on Ship's Stability Theorem - Solution for Stable Attitude of an Inclined Ship-" (Exposition in Japanese), Navigation (Journal of Japan Institute of Navigation), 2021 (October), No.218, pp. 58~65.
(28) Hori, T., Hori, M. : "Theoretical Treatment on the Hydrostatic Stability of Ships (Part 2:) Stable Attitude in an Inclined State", 2023 (January), viXra.org (Pre-print Repository), viXra:2301.0159 [Ver.2], Classical Physics, pp.1~15.
(29) Hori, T. : "Theoretical Procedure on the Hydrostatic Stability of Ships (Part 2:) Stable Attitude in an Inclined State", The Bulletin of Nagasaki Institute of Applied Science, 2023 (June), Vol.63, No.1, Research Notes in Mathematical and Physical Science, pp.55~69.
(30) Hori, T. : "A Consideration on Derivation of Ship's Transverse Metacentric Radius $\overline{B M}$ " (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2017 (April), No. 200 (First $200^{\text {th }}$ Anniversary Issue), pp.75~79.
(31) Hori, T. : "New Developments in the Fundamental Theory for Hydrostatics of Floating Bodies - Part 2 : A Consideration on Derivation of Ship's Transverse Metacentric Radius $\overline{B M}-"$ (in Japanese), Boat Engineering, 2018 (December), No.136, pp.1~5.

Tsutomu Hori and Manami Hori

(32) Hori, T., Hori, M. : "A New Theory on the Derivation of Metacentric Radius Governing the Stability of Ships ", 2021 (November), viXra.org (Pre-print Repository), viXra:2111.0023 [Ver.4], Classical Physics, pp.1~17.
(33) Hori, T. : "A New Theory on the Derivation of Metacentric Radius Governing the Hydrostatic Stability of Ships", The Bulletin of Nagasaki Institute of Applied Science, 2022 (June), Vol.62, No.1, Research Notes in Mathematical and Physical Science, pp.51~67.
(34) Hori, T. : "A Positioning on Ship's Centre of Buoyancy Derived by Surface Integral of Hydrostatic Pressure - Proof that Centre of Buoyancy is Equal to Centre of Pressure - " (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2018 (January), No.203, pp.88~92.
(35) Hori, T. : "A Positioning on Ship's Centre of Buoyancy Derived by Pressure Integral of Hydrostatic Pressure - Part 2 : In the Case of Arbitrary Sectional Form -" (in Japanese), NAVIGATION (Journal of Japan Institute of Navigation), 2018 (July), No.205, pp.28~34.
(36) Hori, T. : "Lecture Video Proving that Center of Buoyancy is Equal to Center of Pressure for the Rectangular Cross-Section (80 minutes in the $1^{\text {st }}$ half) " (in Japanese), 2021 (7 January), Regular Lecture No. 13 of "Hydrostatics of Floating Bodies" (Specialized Subject of Naval Architectural Engineering Course in Nagasaki Institute of Applied Science), https://youtu.be/Wd7jKMXSqhe .
(37) Hori, T. : "Lecture Video Proving that Center of Buoyancy is Equal to Center of Pressure for the Rectangular Cross-Section (90 minutes in the $2^{\text {nd }}$ half)" (in Japanese), 2021 (14 January), Regular Lecture No. 14 of "Hydrostatics of Floating Bodies" (Specialized Subject of Naval Architectural Engineering Course in Nagasaki Institute of Applied Science), https://youtu.be/bniJ6-9vJPI .
(38) Hori, T. : "Naval Architecture Course, Department of Engineering, Faculty of Engineering, Nagasaki Institute of Applied Science" (in Japanese), Introduction of Educational and Research Institutes, NAVIGATION (Journal of Japan Institute of Navigation), 2021 (January), No.215, pp. $38 \sim 45$.
(39) "Naval Architecture Course's Web Site" (in Japanese), Faculty of Engineering in Nagasaki Institute of Applied Science, administrated by Hori, T., http://www.ship.nias.ac.jp/ .
(40) Hori, T. : "Web Page on Hori's Laboratory of Ship Waves and Hydrostatic Stability " (in Japanese), Naval Architectural Engineering Course in Nagasaki Institute of Applied Science, http://www2.cncm.ne.jp/~milky-jun_0267.h/HORI-Lab/ .
(41) Yabushita, K. : "The Stability, Resistance and Propulsion of Ships " (in Japanese), Chapter 4 Relationship between Center of Buoyancy and Pressure Distribution, Self-made Textbook of Department of Mechanical System Engineering, National Defense Academy, 2018 (May), pp.81~96.
(42) Yabushita, K. , Hibi, S. and Okahata, G. : "Identification of Center of Buoyancy Using Pressure Distribution on an Object" (in Japanese), Research Committee of Propulsion and Seakeeping Performance (Japan Society of Naval Architects and Ocean Engineers), 2018 (June), No.10, SPRC 1010, pp.1~14.
(43) Suzuki, K. : "On the Apparent Center of Buoyancy - In Connection with the Hori's Treatise ${ }^{(24)}$-" (in Japanese), Private Note, 2018 (April), pp.1~4.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body
(44) Komatsu, M. : "Considerations on the Center of Action of Buoyancy Acting on a Floating Body (Followup Report)" (in Japanese), Boat Engineering, 2018 (December), No.136, pp.12~18.
(45) Yabushita, K. , Hibi, S. and Okahata, G. : " Identification of Center of Buoyancy and Relation to Pressure Distributions " (in Japanese), Conference Proceedings of the Japan Society of Naval Architects and Ocean Engineers, 2020 (May), Vol.30, No.2020S-GS12-16, pp.629~636.
(46) Hori, T. : "A Positioning on Ship's Centre of Buoyancy Derived by Surface Integral of Hydrostatic Pressure - Part 3 : The Proof for Semi-submerged Circular Cylinder - " (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2019 (April), No.208, pp.60~68.
(47) Hori, T. : "A Positioning on Ship's Centre of Buoyancy Derived by Surface Integral of Hydrostatic Pressure - Part 5 : The Proof for Submerged Circular Cylinder -" (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2020 (October), No.214, pp.62~67.
(48) Hori, T. : "A Positioning on Ship's Centre of Buoyancy Derived by Surface Integral of Hydrostatic Pressure - Part 4 : The Proof for Triangular Prism -" (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2020 (July), No.213, pp.50~58.
(49) Hori, T. : "New Developments in the Fundamental Theory for Hydrostatic of Floating Bodies -Part 1 : The Proof that Centre of Buoyancy is Equal to Centre of Pressure-" (in Japanese), Boat Engineering, 2018 (September), No.135, pp.1~10.
(50) Hori, T. : "A Positioning on Ship's Center of Buoyancy Derived by Surface Integral of Hydrostatic Pressure - Part 6 : The Proof for Submerged and Floating Body of Arbitrary Form - " (in Japanese), Navigation (Journal of Japan Institute of Navigation), 2021 (January), No.215, pp.69~77.
(51) Hori, T. : "New Developments in the Fundamental Theory for Hydrostatic of Floating Bodies - Part 3 : The Proof that Center of Buoyancy is Equal to Center of Pressure for Submerged and Floating Body of Arbitrary Form -" (in Japanese), Boat Engineering, 2021 (June), No.146, pp.35~43.
(52) Hori, T. : "Proof that the Center of Buoyancy is Equal to the Center of Pressure by means of the Surface Integral of Hydrostatic Pressure Acting on the Inclined Ship", 2021 (September), viXra.org (Pre-print Repository), viXra:2109.0008 [Ver.5], Classical Physics, pp.1~21.
(53) Hori, T. : "Proof that the Center of Buoyancy is Equal to the Center of Pressure by means of the Surface Integral of Hydrostatic Pressure Acting on the Inclined Ship", The Bulletin of Nagasaki Institute of Applied Science, 2022 (January), Vol.61, No.2, Research Notes in Mathematical and Physical Science, pp.135~154.
(54) Hori, T. , Hori, M. : "Theoretical Hydrostatics of Floating Bodies — New Developments on the Center of Buoyancy, the Metacentric Radius and the Hydrostatic Stability - ", 2023 (July), viXra.org (Preprint Repository), viXra:2307.0154 [Ver.4], Classical Physics, pp.1~104.
(55) Hori, T., Hori, M. : "Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure (Part 2:) Semi-Submerged Circular Cylinder and Triangular Prism", 2023 (August), viXra.org (Preprint Repository), viXra:2308.0202 [Ver.2], Classical Physics, pp.1~27.

Tsutomu Hori and Manami Hori

(56) Hori, T. : "Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure - Part 2 : Semi-Submerged Circular Cylinder and Triangular Prism - ", The Bulletin of Nagasaki Institute of Applied Science, 2023 (December), Vol.63, No.2, Research Notes in Mathematical and Physical Science, pp. 117~143.
(57) Kobayashi, Y. : " Tank System of LNG-LH2 - Physical Model and Thermal Flow Analysis by Using CFD -" (in Japanese), Seizan-dou Publishing, 2016 (December) 1 ${ }^{\text {st }}$ Printing, p.1~375.
(58) Kobayashi, Y. : "Utilization System of LNG-LH2 at Ultra-Low Temperature and Cold Heat - No Waste Energy System -" (in Japanese), Shouwa-dou Publishing, 2019 (April) 1 ${ }^{\text {st }}$ Printing, p.1~226.
(59) Kobayashi, Y. : "Tank System of Liquefied Hydrogen : LH2 Storage \& Transportation Systems -Feed-forward to LNG Systems -" (in Japanese), Shouwa-dou Publishing, 2023 (June) 1st Printing, p.1~398.
(60) Kurihara, M. : "On the Rolling Motion of a Buoy in Regular Waves" (in Japanese), The Bulletin of the College of Naval Architecture of Nagasaki, 1974 (June), Vol.15, No.1, pp.1~4.
(61) Kurihara, M. : "On the Motions of a Ringed Buoy in Regular Waves" (in Japanese), The Bulletin of Nagasaki Institute of Applied Science, 1978 (October), Vol. 19 (Commemorative issue of the name change from former the College of Naval Architecture of Nagasaki), pp.11~15.
(62) Kurihara, M. : "On the Motions of a Floating Vertical Cylinder in Regular Waves" (in Japanese), The Bulletin of Nagasaki Institute of Applied Science (former the College of Naval Architecture of Nagasaki), 1979 (June), Vol.20, No.1, pp.1~5.

Proof that the Center of Buoyancy is Equal to the Center of Hydrostatic Pressure
 (Part 3:) Submerged Circular Cylinder and Arbitrary Shaped Submerged Body

Authors: Tsutomu Hori, Manami Hori
We recently proved that " the center of buoyancy is equal to the center of hydrostatic pressure" for floating bodies. This subject was an unsolved problem in physics and naval architecture, even though the buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic pressure. Then we thought that the reason why the vertical position of the center of pressure could not be determined was that the horizontal force would be zero due to equilibrium in the upright state.
As a breakthrough, we dared to create the left-right asymmetric pressure field by inclining the floating body with heel angle. In that state, the forces and moments due to hydrostatic pressure were calculated correctly with respect to the tilted coordinate system fixed to the body. By doing so, we succeeded in determining the center of pressure. Then, by setting the heel angle to zero in order to make it upright state, it could be proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross-sectional area under the water surface.
As mentioned above, we have already proved this problem for rectangular and arbitrarily shaped cross-sections, and published them on this viXra.org in English. Following that, in the 2nd report, separate proofs for a semi-submerged circular cylinder and triangular prism were also published here. Thus, we have completed the proof for floating bodies, so in this 3rd report, we aim to prove for submerged bodies. We first prove for a submerged circular cylinder, and then apply Gauss's integral theorem to prove it clearly for an arbitrarily shaped submerged body.

Comments: 22 Pages, 2 Figures, 47 Equations, 62 References.
Download: PDF

Submission history

[v1] 2023-09-27 20:39:20
[v2] 2024-03-07 06:03:39
Unique-IP document downloads: 55 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:

You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

[^0]: \dagger Professor Emeritus, Hori's Laboratory of Ship Waves and Hydrostatic Stability, Nagasaki Institute of Applied Science, Japan
 \dagger Jewel Manami Hori of Five Stars JP, Daughter of \dagger
 viXra: 2309.0136 Classical Physics
 Submitted: 27 September 2023 (Ver.1)
 Replaced: 7 March 2024 (Ver.2)

 E-mail: milky-jun_0267.h@mxb.cncm.ne.jp
 HomePage : http://www2.cncm.ne.jp/
 ~milky-jun_0267.h/HORI-Lab/ (in Japanese)

[^1]: \ddagger Bold text in the list means that there is a HyperLink.

